Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T01:52:02.304Z Has data issue: false hasContentIssue false

Characterization of Zinalco Alloy Superplastically Deformed Using Orientation Imaging Microscopy

Published online by Cambridge University Press:  01 February 2011

Ramos A. Mitsuo
Affiliation:
Instituto de Metalurgia-U.A.S.L.P. Sierra Leona 550, Lomas 2a. Sección, 78210, S.L.P. Mex.
Martínez F. Elizabeth
Affiliation:
Facultad de mgeniería-U.A.S.L.P. Dr. Manuel Nava 8, Zona Universitaria, 78290, S.L.P. Mex.
Negrete S. Jesús
Affiliation:
Instituto de Metalurgia-U.A.S.L.P. Sierra Leona 550, Lomas 2a. Sección, 78210, S.L.P. Mex.
Torres-Villaseñor G.
Affiliation:
Instituto de Investigaciones en Materiales-UNAM, C.U., Apdo. Postal 70-360, 04519 Mex. DF.
Get access

Abstract

Zinalco alloy (Zn-21mass%Al-2mass%Cu) specimens were deformed superplastically with a strain rate (ε) of 1×10-3 s-1 at homologous temperature (TH) of 0.68 (5 ). It was observed neck formation that indicate nonhomegeneus deformation. Grain size and grain boundaries misorientation changes, due superplastic deformation, were characterized by Orientation Imagining Microscopy (OIM) technique. It was studied three regions in deformed specimens and the results were compared with the results for a specimen without deformation. Average grain size of 1 mm was observed in non-deformed specimen and a fraction of 82% for grain boundary misorientation angles with a grain boundaries angles between 15° and 55° was found. For deformed specimen, the fraction of angles between 15° and 55° was decreced to average value of 75% and fractions of low angle (<5°) and high angle (>55°) misorientations were 10% and 15% respectively. The grain size and high fraction of grain boundary misorientation angles between 15° and 55° observed in the alloy without deformation, are favorable for grain rotation and grain boundary sliding (GBS) procces. The changes observed in the fraction of favorable grain boundary angles during superplastic deformation, shown that the superplastic capacity of Zinalco was reduced with the deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baba-Kishi, K. Z., J. Mater. Sci. 37, 1715 (2002).Google Scholar
2. Humphreys, F. J., J. Mater. Sci. 36, 3833 (2001).Google Scholar
3. Adams, B. L., Wright, S. I. and Kunze, K., Metall. Trans 24A, 819 (1993).Google Scholar
4. Mason, T. A. and Adams, B. L., J. Min. Mater. Soc. 46, 43 (1994).Google Scholar
5. Hsiao, C. and Huang, J. C, Mater. Sci. Forum 357–359, 381 (2001).Google Scholar
6. Garmestani, H., Kalu, P and Dingley, D., Mater. Sci. Eng., A242, 284 (1994).Google Scholar
7. Xun, Y, Tan, M. J. and Nieh, T. G., Mater. Sci. Tec. 20, 173 (2004).Google Scholar
8. Nieh, T. G., Wadsworth, J. and Sherby, O.D., Superplasticity en Metals and Ceramics, 1er ed. (Cambridge University Press, U.K., 1997) p. 22.Google Scholar
9. Langdon, T. G., Mater. Sci. Eng., A137, 1 (1991).Google Scholar
10. Furukawa, M., Berbon, P.B., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z. and Langdon, T.G., Metall. Mater. Trans 29A, 169 (1998).Google Scholar
11. Langdon, T. G., J. Mater. Sci. 41, 597 (2006).Google Scholar
12. Torres Villaseñor, G., Revista Ciencia 39, 103 (1988).Google Scholar
13. Mohamed, F., Ahmed, M. I. M., and Langdon, T. G., Metall. Trans. 8A, 933 (1977).Google Scholar
14. Chaudhury P., K., Sivaramakrishnan, V. and Mohamed, A., Metall. Trans. 19A, 2741(1988).Google Scholar
15. Mcnelley, T. R. and Perez P., M. T., Mater. Res. Soc. Symp. Proc. 601, 3 (2000).Google Scholar
16. Langdon, T. G., Mater. Sci. Eng., A174, 225 (1994).Google Scholar
17. Rong, L. Z., Chokshy A., H. and Langdon, T. G., J. Mater. Sci. 23, 2712 (1988).Google Scholar