Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T08:22:58.349Z Has data issue: false hasContentIssue false

Characterization of the SnO2/a-SiC:H Interface in Amorphous Silicon Solar Cell by C-f-T Measurements

Published online by Cambridge University Press:  21 February 2011

D. Caputo
Affiliation:
Dipartimento di Ingegneria Elettronica, Università di Roma 'La Sapienza' Via Eudossianal8, 00184 ROMA (Italy)
G. De Cesare
Affiliation:
Dipartimento di Ingegneria Elettronica, Università di Roma 'La Sapienza' Via Eudossianal8, 00184 ROMA (Italy)
F. Irrera
Affiliation:
Dipartimento di Ingegneria Elettronica, Università di Roma 'La Sapienza' Via Eudossianal8, 00184 ROMA (Italy)
F. Palma
Affiliation:
Dipartimento di Ingegneria Elettronica, Università di Roma 'La Sapienza' Via Eudossianal8, 00184 ROMA (Italy)
S. Salvatori
Affiliation:
Dipartimento di Ingegneria Elettronica, Università di Roma 'La Sapienza' Via Eudossianal8, 00184 ROMA (Italy)
R. Vincenzoni
Affiliation:
Dipartimento di Ingegneria Elettronica, Università di Roma 'La Sapienza' Via Eudossianal8, 00184 ROMA (Italy)
Get access

Abstract

In this paper we present a new method for the characterization of the interface between the transparent conductive oxide (TCO) and the p doped amorphous silicon carbide layer in solar cells. The method is based on electrical capacitance measurements versus frequency in the temperature range: 20K-200K. We use Schottky diode structures (TCO-p-i-Ag) containing the p-i structure actually present in solar cells. Analysis of capacitance at different frequencies allows one to calculate an“activation energy”. Activation energy, temperature, position and shape of the capacitance step can be related to the density of states in the p type material by a model here presented. The effects of the p layer thickness and of the carbon content are investigated. A large increase of activation energy at short thickness is found, which can be related to interface damage, increasing in material with high carbon content. The technique shows an high spatial resolution and has the advantage to investigate the material as grown in the actual device.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grillo, G., Conte, R., della Sala, D, Galluzzi, F., Gramaccioni, G., Tomacello, R., Vittori, V., IEEE Trans. ED 36, 2829 (1989);Google Scholar
2. Cohen, J. D., Semiconductor and Semimetal 21, Chap.2, edited by Pankove, J. I., (Accademie Press, Orlando Florida, 1984);Google Scholar
3. Madan, A., Le Comber, P. G., Spear, W. E., J. Non-Cryst. Solids 20, 239 (1976);Google Scholar
4. Cohen, J. D., Lang, D. V., Horbison, J. P., Philos. Mag. B 25, 5285 (1980);Google Scholar
5. Crandall, R. S., Salamon, S. S., Xu, Yuerin, in Amorphous Silicon Technology, edited by Madan, A., Hamakawa, Y., Thompson, M.J., Taylor, P.C., LeComber, P.G., (Mat. Res. Soc. Proc, 219, Pittsburgh, PA, 1991), pp 557;Google Scholar
6. Spear, W. E., Cloude, C., Goldic, D., Le Comber, P. G., J. Non-Cryst. Solids 97&98, 15 (1987);Google Scholar
7. Chiabrera, A., Solid-St. Electron., 15, 277, (1972);CrossRefGoogle Scholar
8. Street, R. A., Hvdrogenated amorphous silicon, (Cambridge University Press, Cambridge. 1991).Google Scholar