Skip to main content Accessibility help

Characterization of the Pb1 Interface Defect in Thermal (100)Si/SiO2 by Electron Spin Resonance: 29Si Hyperfine Structure and Electrical Relevance

  • A. L. Stesmans (a1)


Optimized electron spin resonance investigation resulted in the observation of the fuill angular dependence of the hyperfine (hi) spectra of the Pb1 interface defect in thermal (100)Si/SiO2, showing that the dominant hf interaction of the associated unpaired electron arises from a single Si site. The defect is identified as a prototype Si dangling bond defect with, much remarkably, the unpaired sp3-orbital pointing closely along a <211> direction at 35.26° with the [100] interface normal. If O is excluded as an immediate part of the defect, the key part of the Pb1 defect is uncovered as a tilted Si3≡Si unit. The incorporation of this defect kernel into a larger defect structure is analyzed within the framework of theoretical insight, suggesting the moiety to be part of a strained interfacial Si-Si dimer. ESR has been combined with electrical measurements to monitor the defect's behavior under thermal treatment, including postoxidation annealing in various ambients. No electrical activity of Pb1 as a detrimental interface trap could be traced, suggesting the defect to be of little relevance for device performance. The results are reviewed and discussed in the light of the defect's characteristic appearance at the (100)Si/SiO2 interface.



Hide All
1. For a review on Si/SiO2 defect physics, seethe 13 papers in Semicond. Sci- Technol. 4, 961 (1989).
2. Poindexter, E. and Caplan, P., Prog. Surf. SO. 14, 211 (1983).
3. Helms, R. and Poindexter, E., Rep. Prog. Phys. 57, 791 (1994).
4. Caplan, P., Poindexter, E., Deal, B., and Razouk, R. R., J Appl. Phys. 50, 5847 (1979).
5. Brower, K., Appl. Phys. Lett. 43, 1111 (1983).
6. Poindexter, E., Caplan, P., Deal, B., and Razouk, R., J. Appl. Phys. 52, 879 (1981).
7. Stesmans, A., Appl. Phys. Lett. 48, 972 (1986).
8. Stesmans, A., Phys. Rev. B 48, 2418 (1993); Phys. Rev. Lett. 70, 1723 (1993).
9. Stesmans, A. and Afanas'ev, V. V., J. Vac. Sci. Technol. B 16, 3108 (1998).
10. Stesmans, A. and Afanas'ev, V. V., J. Appl. Phys. 83, 2449 (1998).
11. Aubert, P., Bardeleben, H. J. von, Delmotte, F., Cantin, J. L., and Hugon, M. C., Phys. Rev. B 59, 10677 (1999).
12. Edwards, A. H., in The Physics and Chemistry of SiO2 and the SiO2 interface, edited by Helms, C. R. and Deal, B. E. (Plenum, New York, 1988), p. 271.
13. Ourmazd, A., Taylor, D. W., Rentschler, J. A., and Bevk, J., Phys. Rev. Lett. 59, 213 (1987).
14. Pasquarello, A., Hybertson, M. S., and Car, R., Phys. Rev. Lett. 74, 1024 (1995).
15. Brower, K. L., Z. Phys. Chem. Neue Folge 151, 177 (1987).
16. Cantin, J. L., Schoisswohl, M., Bardeleben, H. J. von, Zoubir, N. H., and Vergnat, M., Phys. Rev. B52, R11599 (1995).
17. Poindexter, E. H., Gerardi, G. J., Rueckel, M.-E, Caplan, P. J., Johnson, N. M., and Biegelsen, D. K., J. Appl. Phys. 56, 2844 (1984).
18. Gerardi, G. J., Poindexter, E. H., Caplan, P. J., and Johnson, N. M., Appl. Phys. Lett. 49, 348 (1986).
19. Poindexter, E. H., Semicond. Sci. Technol. 4, 961 (1989).
20. Chang, S. T., Wu, J. K., and Lyon, S. A., Appl. Phys. Lett. 48, 662 (1986).
21. Sah, C.-T, Sun, J. Y.-C, Tsou, J. J.-T., J. Appl. Phys. 55, 1525, (1984); L. Trombetta, G. Gerardi, D. J. DiMania, and E Tierney, J. Appl. Phys. 64, 2434 (1988).
22. Stathis, J. H. and Cartier, E., Phys. Rev. Lett. 72, 2745 (1994).
23. Brandt, M. S. and Stutzmann, M., Appl. Phys. Lett. 61, 2569 (1992).
24. The physically present Pb sites include both the unpassivated (ESR-active) ones (Pb) and those passivated by H (PbH) or some other means (PbX).
25. Stesmans, A. and Afanas'ev, V. V., Phys. Rev. B 54, R11129 (1996).
26. Stesmans, A., Nouwen, B., and Afanas'ev, V. V., Phys. Rev. B 58, 15801 (1998).
27. Carlos, W. E., Appl. Phys. Lett. 50, 1450 (1987).
28. Gabrys, J. W., Lenahan, P. M., and Weber, W., Microelectr. Eng. 22, 273 (1993).
29. Watkins, G. D. and Corbett, J. W., Phys. Rev. 121, 1001 (1961); 134A, 1359 (1964).
30. Stesmans, A. and Afanas'ev, V. V., Microelectronic Eng. 48, 114 (1999).
31. Stesmans, A. and Afanas'ev, V. V., Phys. Rev. B 57, 10030 (1998).
32. Gray, P. V. and Brown, D. M., Appl. Phys. Lett. 8, 31 (1966).
33. Landsberg, P. T., Recombination in Semiconductors (Cambridge University Press, 1991).
34. Sah, C.-T, Sun, J. Y.-C, Tsou, J. J.-T., J. Appl. Phys. 55, 1525, (1984); L. Trombetta, G. Gerardi, D. J. DiMaria, and E. Tierney, J. Appl. Phys. 64, 2434 (1988).
35. Stathis, J. H. and Cartier, E., Phys. Rev. Lett. 72, 2745 (1994).
36. Griscom, D. L, J. Electron. Matter 21, 762 (1992); Y. Nissan-Cohen and T. Gorczyca, IEEE Electron. Dev. Lett. 9, 287 (1988).
37. Williams, R., J. Vac. Sci. Technol. 11, 1025 (1974).
38. Brower, K. L., Phys. Rev. B 38, 9657 (1988).
39. Stesmans, A., Appl. Phys. Lett. 68, 2723 (1996); 2076 (1996).
40. Uren, M. J., Brunson, K. M., Stathis, J. H., and Cartier, E., Microelec. Eng. 36, 219 (1997).
41. Vranch, R. L, Henderson, B., and Pepper, M., Appl. Phys. lett. 52, 1161 (1988); D. Vuillaume, D. Deresmes, and D. Stiévenard, Appl. Phys. Lett. 64, 1690 (1994).
42. Krick, J. T., Lenahan, P. M., and Dunn, G. J., Appl. Phys. Lett. 59, 3437 (1991).
43. Stathis, J. H. and DiMaria, D. J., Appl. Phys. Lett. 61, 2887 (1992).
44. Stathis, J. H., Cartier, E., Edwards, A. H., and Poindexter, E. H., in Silicon Nitride and Silicon Dioxide Thin Insulating Films, edited by Deen, M. J., Brown, W. D., Sundaram, K. B., and Raider, S. I. (Electrochemical Society, Pennington, NJ, 1997), p. 259.
45. Edwards, A. and Fowler, B., Microelectr. Reliab. 39, 3 (1999).
46. Tuttle, B. and Walle, C. G. Van de, Phys. Rev. 59, 12884 (1999).
47. Morton, J. R. and Preston, K. F., J. Magn. Res. 30, 577 (1978).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed