Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T10:12:52.509Z Has data issue: false hasContentIssue false

Characterization of Pyrazoline Organic Nanoparticles Encapsulated with Poly(Methyl Methacrylate-co-Ethylene Glycol Dimethacrylate) for Color Electronic Paper

Published online by Cambridge University Press:  26 February 2011

Hyo Sim Kang
Affiliation:
yskang@pknu.ac.kr, Pukyong National University, Department of Chemistry, 599-1, Daeyeon 3-dong, Namgu, Busan, 608-737, Korea, Republic of
Sun Wha Oh
Affiliation:
yskang@pknu.ac.kr, Pukyong National University, Basic Science Research Institute, 599-1 Daeyon 3-Dong, Namgu, Busan, 608-737, Korea, Republic of
Young Soo Kang
Affiliation:
yskang@pknu.ac.kr, Pukyong National University, Chemistry, 599-1 Daeyon 3-Dong, Namgu, Busan, 608-737, Korea, Republic of
Get access

Abstract

1-Phenyl-3-naphthyl-5-((dimethylamino)phenyl)-2-pyrazoline with different diameters of 40 - 190 nm were prepared by the reprecipitation method and polymerized with poly(methyl methacrylate-co-ethylene glycol dimethacrylate) using cationic surfactants for full color electronic paper, which is expected to substitute for the future display. The electronic ink particles of pyrazoline organic nanoparticles polymerized by poly(methylmethacrylate-co-ethylene glycol dimethacrylate) were prepared and monodispersed successfully in aqueous alcohol medium. The size of mono-dispersed electronic ink particles is from 160 to 550 nm. The ink particle size was found to decrease with increasing concentration of the surfactant. The effect of surfactant was significant. The appropriate additions of surfactants result in an increase in electrophoretic mobility. The electrophoretic mobility of the resulting electronic inks was −7.5 to −3.6 × 10−5 cm2/ V·s in the presence of surfactants.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xiao, D., Yang, W., Yao, J., Xi, L., Yang, X. andShuai, Z., J. Am. Chem. Soc. 126, 15439–15444 (2004).Google Scholar
2. Oh, S.W., Zhang, D. R. andKang, Y. S., Mater. Sci. Eng. C 24, 131134 (2004).Google Scholar
3. Oh, S.W. andKang, Y. S., Mol. Cryst. Liq. Cryst. 425, 205212 (2004).Google Scholar
4. Oh, S.W. andKang, Y. S., Colloids and Surfaces A 257–258, 415–418 (2005).Google Scholar
5. Comiskey, B., Albert, J. D.; Yoshizawa, H. andJacobson, J., Nature (London) 394, 253255 (1998).Google Scholar
6. Jo, G. R., Hoshino, K. and Kitamura, T., Chem. Mater. 14, 664669 (2002).Google Scholar
7. Chen, Y., Au, J., Kazlas, P.; Ritenour, A., Gates, H. andMaCreary, M., Nature (London) 423, 136 (2003).Google Scholar
8. Crowley, J. M., Sheridon, N. K. andRomano, L., J. Electrostatics 55, 247259 (2002).Google Scholar
9. Vykoukal, J., Vykoukal, D. M., Sharma, S., Becker, F. F. andGascoyine, P. R. C., Langmuir 19, 24252433 (2003).Google Scholar
10. Braga, M., Leite, C. A. P. andGalembeck, M., Langmuir 19, 75807586 (2003).Google Scholar
11. Yu, D. G. andAn, J. H., Colloids and Surfaces A 237, 8793 (2004).Google Scholar
12. Yu, D. G., An, J. H., Bae, J. Y., Jung, D. J., Kim, S., Ahn, S. D., Kang, S. Y. and Suh, K. S., Chem. Mater. 16, 46934698 (2004).Google Scholar
13. Yu, D. G.; An, J. H., Bae, J. Y., Ahn, S. D., Kang, S. Y. and Suh, K. S., Macromolecules 38, 74857491 (2005).Google Scholar
14. Oh, S.W. andKang, Y. S., Mol. Cryst. Liq. Cryst. 445, 259267 (2006).Google Scholar
15. Oh, S.W. andKang, Y. S., Colloids and Surfaces A 284–285, 359–363 (2006).Google Scholar