Skip to main content Accessibility help

Characterization of Polyiodide-Polymer Complexes by Resonance Ranan Spectroscopy

  • Maria Forsyth (a1), Hans Conrad Zur Loye (a1), Michael Lerner (a1), Andrew Tipton (a1), Donald C. Degroot (a2), Carl R. Kannewurf (a2), Mark Ratner (a1) and Duward F. Shriver (a1)...


The addition of I2 to PPO/MI and MEEP/MI complexes, where M - Na or Li, PPO - poly(propylene oxide), MEEP - methoxyethoxyethoxy phosphazene results in ohmic conductivity. Even in the absence of the metal iodide salt, high conductivities are observed in the polymer/I2 complexes. The presence of polyiodides in all cases is indicated by a Raman band at 170 cm.-1 The width of this peak is found to depend on the concentration of iodine and correlates with increasing conductivity at higher I2 concentrations. An additional feature of the polyiodide complexes is the apparent lack of dependence of conductivity on polymer flexibility as indicated by Tg. In most polymer electrolytes, the conductivity depends upon the glass transition, Tg, with conductivity dropping rapidly at T < Tg. By contrast, the polyiodides show only a small inflection in the conductivity around Tg and substantial conductivity below that temperature. Apparently charge transport dynamics are only weakly coupled to the dynamics of the host polymer. Variable temperature Raman spectroscopy has been employed to investigate the low temperature behavior of polyiodides in PPO/MIn systems.



Hide All
1. Gauthier, M., Fauteux, D., Vassart, C., Belanger, A., Duval, M., Ricouk, P., Chabagno, J. M., Muller, D., Rigaud, P., Armand, M. B., Deroo, D. J., J. Electrochem. Soc. 132, 1333 (1985).
2. Polymer Electrolyte Reviews, edited by MacCallum, J. R. and Vincent, C. A., (Elsevier Applied Science, New York, 1987).
3. Hardy, L. C. and Shriver, D. F., J. Am. Chem. Soc. 108, 2887 (1986).
4. Loye, H. C. zur, Heyen, B. J., Marcy, H. O., DeGroot, D. C., Kannewurf, C. R. and Shriver, D. F., Chem. Mater. 2, 603 (1990).
5. Lerner, M. M., Lyons, L. J., Tonge, J. S. and Shriver, D. F., Chem. Mater. 1, 601 (1989).
6. Loye, H. C. zur, Lyons, L. J., Hardy, L. C., Tonge, J. S. and Shriver, D. F., Mat. Res. Soc. Symp. Proc. 135, 325 (1989).
7. Lyding, J. W., Marcy, H. O., Marks, T. J., Kannewurf, C. R., IEEE Trans. Instrum. Meas. 37, 76 (1988).
8. Naur, E. M., Chen, L. H., Laane, J., J. Phys. Chem. 90, 2841 (1986).
9. Panet, F. W. and Taylor, W. J., J. Inorg. Nucl. Chem. 32, 2458 (1970).
10. Ratner, M. A. and Shriver, D. F., Chem. Rev. 88, 109 (1988).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed