Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-26T14:49:53.326Z Has data issue: false hasContentIssue false

Characterization of Polycrystalline Silicon Thin Films by Photoluminescence

Published online by Cambridge University Press:  21 February 2011

R. Pandya
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor New York, 10510, U.S.A
K. Shahzad
Affiliation:
Philips Laboratories, North American Philips Corporation, Briarcliff Manor New York, 10510, U.S.A
Get access

Abstract

Photoluminescence (PL) measurements have been carried out in hydrogenated and as deposited polycrystalline silicon thin films deposited on quartz substrates. Behavior of the PL spectrum as a function of temperature and intensity in the hydrogenated samples is reported. A mechanism that provides a qualitative explanation for the observed PL results is described. In the unhydrogenated sample the signal was much weaker and we were unable to observe any signals over an appreciable range of intensity and temperatures. The cause for much lower signals in the unhydrogenated sample is most likely due to higher surface recombination velocity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Werner, J., Jantsch, W. and Queisser, H. J., Sol. St. Comm., Vol 42, 415 (1982).Google Scholar
2) Pike, G. E. and Seager, C. H., J. appl. Phys., Vol 50, 3414 (1979).10.1063/1.326334Google Scholar
3) Pandya, R. and Khan, B. A., J. Appl. Phys., Vol 62, No.8, 3244 (1987)10.1063/1.339329Google Scholar
4) Johnson, N. M., Biegelsen, D. K. and Moyer, M. D., Appl. Phys. Lett. Vol 40, 882 (1982).Google Scholar
5) Jackson, W. B., Johnson, N. M. and Biegelson, D. K., Appl. Phys. Lett., VOL 43, #2, 195 (1983).10.1063/1.94278Google Scholar
6) For review see Semiconductors and Semimetals, Edited by Pancove, J.I., (academic Press, New York, 1984), Vol 21B,page 197.Google Scholar
7) Komuro, S., AoYagi, Y., Segawa, Y., Namba, S., Masuyama, A., Kruangam, d., Okamoto, H. and Hamakawai, Y., J appl. Phys. Vol 58, 943 (1985).10.1063/1.336170Google Scholar
8) Deppina, S.P., Homewood, K., Cavenett, B. C.,. Austin, G., Searle, T. M., Willeke, G. and Kinmond, S., Phil. Mag. B 47, L57 (1983).Google Scholar
9) Bhat, P. K., Diprose, G., Searle, T.M., Austin, I.G., LeComber, P.G. and Spear, W.E., Physica 117 B and 118 B, 917 (1983).Google Scholar
10) Khan, B. and Pandya, R., IEEE Trans. on Electron Devices (To be Published).Google Scholar
11) Boulitrop, F. and Chenevas-Paule, A., Journal De Physique, Vol 43, #10, 153 (1982).Google Scholar
12) Sauer, R., Weber, J., Stolz, J., Weber, E. R., Kusters, K. H. and Alexander, H., Applied Physics A, 36, pp 113 (1985).Google Scholar
13) Baumgart, H., Weber, J. and Pandya, R., IEEE SOS/SOI workshop, Sept 30-Oct 2, (1986).Google Scholar