Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-14T23:49:54.518Z Has data issue: false hasContentIssue false

Characterization of Oxide Etching and Wafer Cleaning using Vapor-Phase Anhydrous HF and Ozone

Published online by Cambridge University Press:  10 February 2011

Barbara Froeschle
Affiliation:
STEAG-AST elektronik GmbH, Daimlerstrasse 10, D-89160 Dornstadt, Germany
Lutz Deutschmann
Affiliation:
STEAG-AST elektronik GmbH, Daimlerstrasse 10, D-89160 Dornstadt, Germany
Anton J. Bauer
Affiliation:
Fraunhofer-Institut fuer Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, D-91058 Erlangen
Edmund P. Burte
Affiliation:
Fraunhofer-Institut fuer Integrierte Schaltungen, Bauelementetechnologie, Schottkystrasse 10, D-91058 Erlangen
Get access

Abstract

A cleaning process using anhydrous HF (AHF)/methanol and ozone is carried out in a STEAG-AST Vapor Phase Cleaning module (VPC). This module is integrated in a state-of-the-art cluster tool also consisting of a STEAG-AST Rapid Thermal Oxidation module (RTO). The dependence of AHF vapor phase etch rate of thermally grown silicon dioxide on different process parameters, such as etch time, AHF-flow, and temperature is evaluated. The optimized etch process is found to be at a temperature of 40°C and at a pressure of 50 mbar for this VPC module. Using the above etch parameters various combinations of vapor phase surface preparation chemistries combining AHF etching and ozone/UV cleaning are evaluated.

To demonstrate the feasibility of this cluster tool for advanced gate dielectric formation, 4.0 nm thin oxide is grown directly after the cleaning in the RTO module without breaking the vacuum. Time dependent dielectric breakdown results for oxides pre-oxidation-cleaned in AHF, and in AHF followed by ozone are compared to a reference sample without any dry pre-oxidation cleaning. It can be shown, that the cleaning in AHF with a subsequent ozone step at 200°C under UV light leads to improved breakdown characteristics compared to AHF/methanol cleanings without such subsequent ozone/UV step or conventional wet cleaning using HF-Dip.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Cleaning and Contamination Monitoring Systems for the Semiconductor Industry, VLSI Research, Inc. San Jose, CA, April 1986.Google Scholar
[2] Ruzyllo, J., „Microcontamination, Vol 6(3), 39 (1988).Google Scholar
[3] Khilnami, A., „Cleaning Semiconductor Surfaces: Facts and Foibles”. in Particles on Surfaces 1. Detection, Adhesion, and Removal”, Mittal, K.L., ed. Plenum Press, New York, 1986, p. 17.Google Scholar
[4] Deal, B.E., McNeilly, M.A., Koa, D.B., deLarios, J.M., „Vapor Phase Wafer Cleaning Processing for the 1990s”, Solid. State Technol., 73 (July 1990).Google Scholar
[5] Glowacki, F., Froeschle, B., Deutschmann, L., Sagne, I., Lavial, D., Bensahel, D., Martin, F., Halimaoui, A., Bauer, A.J., at MRS 97 Spring Meeting San Francisco.Google Scholar
[6] Ruzyllo, J., Torek, K., Daffron, C., Grant, R., and Novak, R., J. Electrochem. Soc., Vol 140, No 4, L64(1993).Google Scholar
[7] Torek, K., Ruzyllo, J., Grant, R., Novak, R., J. Electrochem. Soc., Vol 142, No 4, 1322 (1995).Google Scholar
[8] Lee, C. S., Baek, J. T., Yoo, H. J., and Woo, S. I., J. Electrochem. Soc., Vol 143, No 3, 1099 (1996).Google Scholar
[9] Froeschle, Barbara, Deutschmann, Lutz, Bauer, Anton, Kasko, Igor, Oechsner, Richard, and Schneider, Claus, submitted to 192th Meeting of The Electrochemical Society, Paris 1997.Google Scholar