Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-21T22:43:27.991Z Has data issue: false hasContentIssue false

Characterization of n-type layer by S+ ion implantation in 4H-SiC

Published online by Cambridge University Press:  15 March 2011

Yasunori Tanaka
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Ibaraki, Japan
Naoto Kobayashi
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Ibaraki, Japan
Hajime Okumura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Ibaraki, Japan
Sadafumi Yoshida
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Ibaraki, Japan
Masataka Hasegawa
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Ibaraki, Japan
Masahiko Ogura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Ibaraki, Japan
Hisao Tanoue
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Ibaraki, Japan
Get access

Abstract

We investigated the optical, electrical and structural properties of the layer which was implanted with sulfur ion(S+) in 4H-SiC. By using the high temperature ion implantation technique more less residual defects were observed compared with the room temperature ion implantation by Rutherford backscattering spectrometry and channeling(RBS-channeling). After annealing at 1700°C there was no significant difference between the implanted sample and virgin sample in crystallinity within the detection limit of RBS-channeling. From the result of low temperature photoluminescence(LTPL) we could see the photoluminescences, so-called D1 and D2center, originating in the defects formed by ion implantation and post-annealing(∼1700°C) processes and confirmed that their intensities decreased with the increasing of the total dose of S+. The result of Hall effect measurement suggested that the conduction type of S+-implanted layer is n-type and their activation energies were 275meV and 410meV by the fitting of neutrality equation assuming the two activation energies for the hexagonal and cubic lattice sites in 4H-SiC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grimmeiss, H.G., Janzén, E. and Larsson, K., Phys. Rev., B25, 2627(1982).Google Scholar
2. Janzén, E., Stedman, R., Grossmann, G. and Grimmeiss, H.G., Phys. Rev., B29, 1907(1984).Google Scholar
3. Suttrop, W., Zhang, H., Schadt, M., Pensl, G., Dohnke, K. and Leibenzeder, S., Amorphous and Crystalline Silicon Carbide IV, Eds. Yang, C.Y., Rahman, M.M. and Harris, G.L., Springer-Verlag, Berlin 143(1992).Google Scholar
4. Suttrop, W., Pensl, G., Choyke, W.J., Stein, R. and Leibenzeder, S., J. Appl. Phys., 72, 3708(1992).Google Scholar
5. Götz, W., Schöner, A., Pensl, G., Suttrop, W., Choyke, W.J., Stein, R. and Leibenzeder, S., J. Appl. Phys., 73, 3332(1993).Google Scholar
6. Kimoto, T., Inoue, N. and Matsunami, H., phys. stat. sol.(a), 162, 263(1997).Google Scholar
7. Troffer, T., Peppermüller, C., Pensl, G., Rottner, K. and Schöner, A., J. Appl. Phys., 80, 3739 (1996).Google Scholar
8. Ohshima, T., Uedono, A., Abe, K., Itoh, H., Aoki, Y., Yoshikawa, M., Tanigawa, S. and Nashiyama, I., Appl. Phys., A67, 407(1998).Google Scholar
9. Ziegler, J.F., Nucl. Instrum. Methods Phys. Res., B136–138,141(1998).Google Scholar
10. Tanaka, Y., Kobayashi, N., Okumura, H., Yoshida, S., Hasegawa, M., Ogura, M. and Tanoue, H., to be publishedGoogle Scholar
11. Sridhara, S.G., Nizhner, D.G., Devaty, R.P., Choyke, W.J., Troffer, T., Pensl, G., Larkin, D.J. and Kong, H.S., Materials Science Forum, 264–268, 461(1998).Google Scholar
12. Tanaka, Y., Kobayashi, N., Hasegawa, M., Yoshida, S., Ishida, Y., Nishijima, T. and Hayashi, N., Materials Science Forum, 264–268, 713(1998).Google Scholar
13. Patrick, L. and Choyke, W.J., Phys. Rev., B5, 3253(1972).Google Scholar
14. Patrick, L. and Choyke, W.J., J. Phys. Chem. Solids, 34, 565(1973).Google Scholar
15. Freitas, J.A. Jr., Bishop, S.G., Edmond, J.A., Ryu, J. and Davis, R.F., J. Appl. Phys., 61, 2011(1987).Google Scholar
16. Sridhara, S.G., Nizhner, D.G., Devaty, R.P., Choyke, W.J., Dalibor, T., Pensl, G. and Kimoto, T., Materials Science Forum, 264–268, 493(1998).Google Scholar
17. Suvorova, A.A., Usov, I.O., Lebedev, O.I., Tendeloo, G. Van and Suvorov, A.V., Mat. Res. Soc. Symp. Proc., 512, 481(1998).Google Scholar
18. Ohno, T. and Kobayashi, N., Materials Science Forum, in press.Google Scholar
19. Capano, M.A., Cooper, J.A. Jr., Melloch, M.R., Saxler, A. and Mitchel, W.C., Materials Science Forum, in press.Google Scholar
20. , Schöner, Karlsson, S., Schmitt, T., Nordell, N., Linnarsson, M. and Rottner, K., Mat. Sci. Eng., B61–B62, 389(1999).Google Scholar
21. Patrick, L., Phys. Rev., 38, 50(1967).Google Scholar