Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-07T06:02:24.670Z Has data issue: false hasContentIssue false

Characterization of High Surface Area Silicon Oxynitrides

Published online by Cambridge University Press:  25 February 2011

Peter W. Lednor
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.), Badhuisweg 3, 1031 CM Amsterdam, The Netherlands
Rene De Ruiter
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.), Badhuisweg 3, 1031 CM Amsterdam, The Netherlands
Kees A. Emeis
Affiliation:
Koninklijke/Shell-Laboratorium, Amsterdam (Shell Research B.V.), Badhuisweg 3, 1031 CM Amsterdam, The Netherlands
Get access

Abstract

High surface area silicon oxynitrides have been prepared by nitrida- tion of silica with ammonia. Characterization by Fourier-transform infrared spectroscopy has allowed quantitative determination of hydroxyl, amido and imido groups. Data obtained by X-ray photoelectron spectroscopy show that the nitrogen is well distributed in the surface of the materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chorley, R. W. and Lednor, P. W., Adv. Mater. 3, 475 (1991).Google Scholar
2. Lednor, P. W. and de Ruiter, R., in Better Ceramics Through Chemistry III, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 121, Pittsburgh, PA 1988) pp. 497502; J. Chem. Soc., Chem. Commun., 320 (1989).Google Scholar
3. Lednor, P. W. and de Ruiter, R. in Inorganic and Metal-Containing Polymeric Materials, edited by Sheats, J. E., Carraher, C. E., Pittman, C. U., Zeldin, M. and Currell, B. (Plenum, New York, 1990), p. 187.CrossRefGoogle Scholar
4. Lednor, P. W. and R. de Ruiter, J. Chem. Soc, Chem. Commun., 1625 (1991).Google Scholar
5. Fink, P. and Datka, J., J. Chem. Soc. Faraday Trans. I, 85, 3079 (1989).CrossRefGoogle Scholar
6. Peri, J. B., J. Phys. Chem. 70, 2937 (1966).CrossRefGoogle Scholar
7. Denisse, C. M. M., Janssen, J. F. M., Habraken, F. H. P. M. and van der Weg, W. F., Appl. Phys. Lett. 52, 1308 (1988).Google Scholar
8. Busca, G., Lorenzelli, V., Porcile, G., Baraton, M. I., Quintard, P., and Marchand, R., Mater. Chem. Phys. 14, 123 (1986).Google Scholar
9. Murakami, K., Takeuchi, T., Ishikawa, K. and Yamamota, T., Appl. Surf. Sci. 33/34, 742 (1988).Google Scholar
10. Tsu, D. V., Lucovsky, G. and Mantini, M. J., Phys. Rev. B, 33, 7069 (1986).Google Scholar
11. Narikawa, S., Kojima, Y. and Ehara, S., Jpn. J. Appl. Phys. 24, L861 (1985).Google Scholar
12. Baraton, M. I., Lednor, P. W. and Quintard, P., in preparation.Google Scholar
13. Brow, R. K. and Pantano, C. G., J. Am. Ceram. Soc. 69, 314 (1986).CrossRefGoogle Scholar
14. Raider, S. I., Flitsch, R., Aboaf, J. A. and Pliskin, W. A., J. Electrochem. Soc. 123, 560 (1976).CrossRefGoogle Scholar