Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T21:54:44.902Z Has data issue: false hasContentIssue false

Characterization of GaN MOS Structures Using Photoanodically Grown Oxides with Respect to FET Devices

Published online by Cambridge University Press:  17 March 2011

D. Mistele
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, GermanyE-mail:david.mistele@lfi.uni-hannover.de
T. Rotter
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany
R. Ferretti
Affiliation:
Institute for Semiconductor Technology, University of Hannover, Appelstr.4A, D-30167 Hannover, Germany
F. Fedler
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany
H. Klausing
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany
O.K. Semchinova
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany
J. Stemmer
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany
J. Aderhold
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany
J. Graul
Affiliation:
Laboratory for Information Technology, University of Hannover, Schneiderberg 32, D-30167 Hannover, Germany
Get access

Abstract

Photoanodically grown Ga2O3 layers were characterized with respect to their suitability as gate dielectrics for GaN based MOSFET Device applications. The Ga2O3 layers were produced in a photoelectrochemical cell using aqueous solutions of KOH. IV characterization of MOS structures show insulating behavior of the oxide layers and CV measurements indicate a small density of states at the oxide/GaN interface. Integrating the wet chemical oxide growth in a MOSFET device fabricating process includes tungsten as gate metal together with H2O2 as etching solution for the gate metal. Source/drain areas were made free of oxide by the alkaline developer of a conventional lithographic step and metallization was done by using the liftoff technique. MOS structures show no inversion mode but strong depletion in reverse biasing mode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Han, J., Baca, A.G., Shul, R.J., Willison, C.G., Zhang, L., Ren, F., Zhang, A.P., Dang, G.T., Donovan, S.M., Cao, X.A., Cho, H., Jung, K.B., Abernathy, C.R., Pearton, S.J., Wilson, R.G., Appl. Phys. Lett. 74 (18), 2702 (1999)Google Scholar
2. Cao, X.A., Dang, G.T., Zhang, A.P., Ren, F., J.M. Van Hove, Klaassen, J.J., Polley, C.J., Wowchak, A.M., Chow, P.P., King, D.J., Abernathy, C.R., Pearton, S.J., Electrochem. Solid-State Lett. 3 (3), 144 (2000)Google Scholar
3. Bardwell, J.A., Foulds, I., Lamontagne, B., Tang, H., Webb, J.B., Marshall, P., Rolfe, S.J., Stapledon, J., MacElwee, T.W., J. Vac. Sci. Technol. A 18 (2), 750 (2000)Google Scholar
4. Murphy, M.J., Foutz, B.E., Chu, K., Wu, H., Yeo, W., Schaff, W.J., Ambacher, O., Eastman, L.F., Eustis, T.J., Dimitrov, R., Stutzmann, M., Rieger, W., MRS Internet J. Nitride Semicond. Res. 4S1, G 8.4 (1999)Google Scholar
5. Khan, M.A., Kuznia, J.N., Bhattarai, A.R., Olson, D.T., Appl. Phys. Lett. 62 (15), 1786 (1993)Google Scholar
6. Johnson, J.W., Luo, B., Ren, F., Gila, B.P., Krishnamoorthy, W., Abernathy, C.R., Pearton, S.J., Chyi, J.I., Nee, T.E., Lee, C.M., Chuo, C.C., Appl. Phys. Lett. 77 (20), 3230 (2000)Google Scholar
7. Daumiller, I., Kirchner, C., Kamp, M., Ebeling, K.J., Kohn, E., IEEE Electron. Dev. Lett. 20 (9), 448 (1999)Google Scholar
8. Rotter, T., Uffmann, D., Ackermann, J., Aderhold, J., Stemmer, J., Graul, J., Mat. Res. Soc. Symp. Proc. 482, 1003 (1998)Google Scholar
9. Rotter, T., Aderhold, J., Mistele, D., Semchinova, O., Stemmer, J., Uffmann, D., Graul, J., Mat. Sci. Eng. B59, 350 (1999)Google Scholar
10. Rotter, T., Mistele, D., Stemmer, J., Fedler, F., Aderhold, J., Graul, J., Schwegler, V., Kirchner, C., Kamp, M., Heuken, M. Appl. Phys. Lett. 76 (26), 3923 (2000)Google Scholar
11. Mistele, D., Rotter, T., Fedler, F., Klausing, H., Semchinova, O.K., Stemmer, J., Aderhold, J., and Graul, J., Mat. Res. Soc. Symp. Proc. 622 T6.20 (2000)Google Scholar
12. Khan, M.A., Hu, X., Tarakji, A., Simin, G., Yang, J., Gaska, R., Shur, M.S., Appl. Phys. Lett. 77(9), 1339 (2000)Google Scholar
13. Mistele, D., Rotter, T., Ferretti, R., Klausing, H., Fedler, F., Semchinova, O.K., Stemmer, J., Aderhold, J., and Graul, J., Electrochem. Soc. Proc. Vol. PV 2000–18 (SOTAPOCS), 91 (2000)Google Scholar
14. Hartnagel, H.L., J. Vac. Sci. Technol. 13 (4), 860 (1976)Google Scholar
15. Geib, K.M., Wilmsen, C.W., J. Vac. Sci. Technol. 17 (5), 952 (1980)Google Scholar
16. Hong, M., Lu, Z.H., Kwo, J., Kortan, A.R., Mannaerts, J.P., Krajewski, J.J., Hsieh, K.C., Chou, L.J., Cheng, K.Y., Appl. Phys. Lett. 76 (3), 312 (2000)Google Scholar
17. Handbook of Auger Electron Spectroscopy, ed. Hedberg, C.L., (Phys. Electron. Inc.,1985)Google Scholar
18. Roy, R., Hill, V.G., Osburn, E.F., J. Am. Chem. Soc. 74, 719722 (1952)Google Scholar
19. Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G., Konstadinidis, K., Mannaerts, J.P., Schnoes, M.L., Zydzik, G.J., J. Appl. Phys. 77 (2), 686 (1995)Google Scholar
20. Nicollian, E.H., Brews, J.R., MOS Physics and Technology, John Wiley & Sons, New York, (1982)Google Scholar