Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T01:21:38.140Z Has data issue: false hasContentIssue false

Characterization of Emitter-Collector Shorts by Anodization, Voltage Contrast Sem, and Tem

Published online by Cambridge University Press:  25 February 2011

A. H. Carim
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
R. Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
W. T. Stacy
Affiliation:
Philips Research Laboratories Sunnyvale, Signetics Corporation, 811 E. Arques Avenue, Sunnyvale, CA 94086
Get access

Abstract

Chemical anodization and voltage contrast scanning electron microscopy (VC-SEM) have been used to identify electrically faulty structures in a bipolar test array. Direct comparison of these techniques was achieved by examining the same emitters with each method. VC-SEM is shown to be a useful technique for delineating E-C shorts because of its nondestructive and purely electrical nature. Further investigations by transmission electron microscopy revealed dislocations in many short-circuited emitters and occasionally in unshorted devices. This confirmed prior observations that crystallographic defects in silicon devices may sometimes be, but are not always, electrically active.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barson, F., IEEE J. Solid-State Circuits SC-li, 505 (1976).Google Scholar
2. Plantinga, G. H., IEEE Trans. Electron Devices ED-16, 394 (1969).10.1109/T-ED.1969.16763CrossRefGoogle Scholar
3. Barson, F., Hess, M. S., and Roy, M. M., J. Electrochem. Soc. 116, 304 (1969).10.1149/1.2411820CrossRefGoogle Scholar
4. Tice, W. K., Lange, R. C., and Shasteen, R. B., in Semiconductor Silicon 1973, ed. by Huff, H. R. and Burgess, R. R. (The Electrochemical Society, Inc., Princeton, NJ, 1973), p. 639.Google Scholar
5. Seto, D. K., Barson, F., and Duncan, B. F., in ref. 4, p. 651.Google Scholar
6. Parrillo, L. C., Payne, R. S., Seidel, T. E., Robinson, M., Reutlinger, G. W., Post, D. E., and Field, R. L. Jr., IEEE Trans. Electron Devices ED-28, 1508 (1981).10.1109/T-ED.1981.20638CrossRefGoogle Scholar
7. Casey, J. F., Meredith, J. W., and Oleszek, G. M., J. Electrochem. Soc. 129, 354 (1982).10.1149/1.2123836CrossRefGoogle Scholar
8. Lunnon, M. E., Allison, D. F., and Stacy, W. T., in Defects in Silicon, ed. by Bullis, W. M. and Kimerling, L. C. (The Electrochemical Society, Inc., Princeton, NJ, 1983), p. 463.Google Scholar
9. Kulkarni, M. V., Hasson, J. C., and James, G. A. A., IEEE Trans. Electron Devices ED-19, 1098 (1972).10.1109/T-ED.1972.17556CrossRefGoogle Scholar
10. Appels, J. A., Kooi, E., Paffen, M. M., Schatorjé, J. J. H., and Verkuylen, W. H. C. G., Philips Res. Repts. 25, 118 (1970).Google Scholar
11. Hu, S. M., J. Electrochem. Soc. 124, 578 (1977).10.1149/1.2133354CrossRefGoogle Scholar
12. Newbury, D. E., Scanning Electron Microscopy/1977 1, 553 (1977).Google Scholar
13. Kolbesen, B. O., Mayer, K. R., and Schuh, G. E., J. Phys. E: Sci. Instrum. 8, 197 (1975).10.1088/0022-3735/8/3/015CrossRefGoogle Scholar
14. Kato, T., Matsukawa, T., and Shimizu, R., Appl. Phys. Lett. 26, 415 (1975).10.1063/1.88220CrossRefGoogle Scholar
15. Marcus, R. B., Robinson, M., Sheng, T. T., Haszko, S. E., Murarka, S. P., and Katz, L. E., J. Electrochem. Soc. 124, 425 (1977).10.1149/1.2133317CrossRefGoogle Scholar