Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T10:31:35.257Z Has data issue: false hasContentIssue false

Characterization of Defects Created in Silicon Due to Etching in Low-Pressure Plasmas Containing Fluorine and Oxygen

Published online by Cambridge University Press:  21 February 2011

I. A. Buyanova
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
A. Henry
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
B. Monemar
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
J. L. Lindström
Affiliation:
National Defence Research Establishment, S-581 11 Linköping, Sweden
A. Lamprecht
Affiliation:
Dept of Solid State Electronics, Royal Institute of Technology, S-164 40 Kista, Sweden
B. G. Svensson
Affiliation:
Dept of Solid State Electronics, Royal Institute of Technology, S-164 40 Kista, Sweden
G. S. Oehrlein
Affiliation:
Department of Physics, State University of New York, Albany, NY 12222, USA
Get access

Abstract

Defect characterization in n-type silicon after the reactive ion etching (RIE) in low-pressure plasmas containing fluorine and oxygen is performed by using photoluminescence (PL) and deep level transient spectroscopies (DLTS). It is shown that RIE treatment results in the formation of (i) luminescence centers giving rise to the C- and G- excitonic lines and broad emission bands related to radiation-induced defect complexes and extended defects and (ii) several electron traps located at 0.16 eV, 0.26 eV, 0.43 eV and 0.58 eV below the conduction band. The addition of oxygen to the SF6 and CF4 plasma is shown to cause nonuniform stress in the near surface region. This stress is responsible for the experimentally observed splitting of the C- and G-excitonic lines, a low energy shift of the phosphorous bound exciton lines, as well as the splitting of the DLTS spectra. It is shown that the stress field is highly inhomogeneous across the wafer, and is rather related to the RIE-induced extended defects than caused by the reaction layer formed on the Si surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Oehrlein, G. S., Mat. Sci. Eng. B4, 441 (1989).Google Scholar
2 Gambino, J. P., Monkowski, M. D., Shepard, J. F., and Parks, C. C., J. Electrochem. Soc. 137, 976 (1990).Google Scholar
3 Jastrzebski, L., IEEE Trans. Electron. Devices, ED, 29 (1982)Google Scholar
4 Oehrlein, G. S., Kroesen, G. W., and Lindström, J. L., J. Vac. Sci. Technol. A 10, 3092 (1992).Google Scholar
5 Oehrlein, G. S., Chan, K. K., Jaso, M.A. and Rubloff, G. W., J. Vac. Sci. Technol. A 7, 1030 (1989).Google Scholar
6 Park, H. H., Kwon, K. H., Lee, J. L., Suh, K. S., Kwon, O. J., Cho, K. I., and Park, S. C., J. Appl. Phys. 1994, 76, 4596 (1994).Google Scholar
7 Henry, A., Awadelkarim, O. O., Hallin, C., Lindström, J. L., and Oehrlein, G. S., J. Electrochem. Soc. 138, 1456 (1991).Google Scholar
8 Belkacem, A., Arnal, Y., Chantre, A., Pomot, C., J. Vac. Sci. Technol. Bll, 709 (1993).Google Scholar
9 Kawamoto, Y. and Hashimoto, N., Proc. 2nd Symp. on Dry Processes, Inst. of Electr. Eng. Japan, p.63 (1980).Google Scholar
10 Weber, J., Davis, R. J., Habermeier, H. U., Sawyer, W. D., and Singh, M., Appl. Phys. A41, 175 (1986).Google Scholar
11 Henry, A., Monemar, B., Lindström, J. L., Bestwick, T. D., and Oehrlein, G. S., J. Appl. Phys. 70, 5597 (1991).Google Scholar
12 Buyanova, I. A., Henry, A., Monemar, B., Lindström, J. L., and Oehrlein, G. S., J. Appl. Phys. 78, in press (1995).Google Scholar
13 Benton, J. L., Michel, J., Kimerling, L. C., Weir, B. E., and Gottscho, R. A., J. Electr. Materials 20, 643 (1991).Google Scholar
14 Benton, J. L, Weir, B. E., Eaglesham, D. J., and Gottscho, R. A., Michel, J. L., and Kimerling, L. C., J. Vac. Sci. Technol. B10, 540 (1992).Google Scholar
15 Davies, G., Phys. Rep. 176, 84 (1989).Google Scholar
16 Buyanova, I. A., Chen, W. M., Henry, A., Ni, W.-X., Hansson, G. V., and Monemar, B., Phys. Rev. B 52, in press (1995).Google Scholar
17 Bender, H., Phys. Stat. Sol. (a) 86, 245 (1984).Google Scholar