Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-30T22:48:46.987Z Has data issue: false hasContentIssue false

Characterization of AlxGa1-xN/ AlyGa1-yN Distributed Bragg Reflectors Grown by Plasma Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 March 2011

H. Klausing
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
F. Fedler
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
T. Rotter
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
D. Mistele
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
O. Semchinova
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
J. Stemmer
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
J. Aderhold
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
J. Graul
Affiliation:
Laboratorium für Informationstechnologie, Universität Hannover, GERMANY
Get access

Abstract

AlxGa1-xN/ AlyGa1-yN Distributed Bragg Reflectors (DBRs) with up to 45 periods have been grown on (0001) sapphire substrates by r.f. plasma-assisted molecular beam epitaxy (PAMBE) with the aid of two Al effusion cells. Several samples were grown with an Al mole fraction varying between 0.38 ≤ x ≤ 1 (0 ≤ y ≤ 0.4) at temperatures of up to 890°C. In all samples, an AlxGa1-xN buffer layer was used to prevent cracking of the quarter wave stack and improving surface morphology by choosing the Al content so that strain energy in the DBR structure would be compensated.

X-ray diffraction (XRD) and scanning electron microscopy (SEM) investigations were performed to determine the thickness of the quarter wave layer periods and the Al mole fraction of corresponding AlxGa1-xN single layers.

Room-temperature calibrated reflection and transmission (R&T) measurements were performed. Thus stray and self-absorption of the DBRs were extracted from reflectance and transmittance. The thickness of the quarter wave layers was designed such that the measured peak reflectances appeared between 346 nm to 421 nm. The dispersion data, including refractive indices and absorption coefficients, used in the calculation were extracted from R&T measurements done on the above mentioned AlxGa1-xN single layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Khan, M., Kuznia, J. N., Hove, J. M. Van, Olsen, D. T., Appl. Phys. Lett. 59(12), 1449 (1991)Google Scholar
2. Someya, T. and Arakawa, Y., Appl. Phys. Lett. 73(25), 3653 (1998)Google Scholar
3. Ng, H. M., Doppalapudi, D., Iliopoulos, E. and Moustakas, T. D., Appl. Phys. Lett. 74(7), 1036 (1999)Google Scholar
4. Langer, R., Barski, A., Simon, J., Pelekanos, N. T., Konovalov, O., Andre, R. and Dang, Le Si, Appl. Phys. Lett. 74(24), 3610 (1999)Google Scholar
5. Krestnikov, I. L., Lundin, W. V., Sakharov, A. V., Semenov, V. A., Usikov, A. S., Tsatsul'nikov, A. F., Alferov, Zh. I., Ledentsov, N. N., Hoffmann, A. and Bimberg, D., Appl. Phys. Lett. 75(9), 1192 (1999)Google Scholar
6. Nakada, N., Nakaji, M., Ishikawa, H., Egawa, T., Umeno, M. and Jimbo, T., Appl. Phys. Lett. 76(14), 1804 (2000)Google Scholar
7. Klausing, H., Aderhold, J., Fedler, F., Mistele, D., Stemmer, J., Semchinova, O., Graul, J., Dänhardt, J. and Panzer, S., Proc. of the SPIE 3944 (2), 844 (2000)Google Scholar
8. Ng, H. M., Moustakas, T. D. and Chu, S. N. G., Appl. Phys. Lett. 76(20), 2818 (2000)Google Scholar
9. Waldrip, K. E., Han, J., Figiel, J. J., Zhou, H., Makarona, E. and Nurmikko, A. V., Appl. Phys. Lett. 78 (21), 3205 (2001)Google Scholar
10. Redwing, J. M., Loeber, D. A. S., Anderson, N. G., Tischler, M. A. and Flynn, J. S., Appl. Phys. Lett. 69 (1), 1 (1996)Google Scholar
11. Semond, F., Antoine-Vincent, N., Schnell, N., Malpuech, G., Leroux, M., Massies, J., Disseix, P., Leymarie, J. and Vasson, A., phys. stat. sol. (a) 183, 163 (2001)Google Scholar
12. Ambacher, O., Arzberger, M., Brunner, D., Angerer, H., Freudenberg, F., Esser, N., Wethkamp, T., Wilmers, K., Richter, W. and Stutzmann, M., MRS Internet J. Nitride Semicond. Res. 2 (22), (1997)Google Scholar
13. Gatzen, H.H., Mätzig, J.C., Proceedings ASPE 1996 Annual Meeting, 14, 536 (1996)Google Scholar
14. Fedler, F., Hauenstein, R. J., Rotter, T., Klausing, H., Mistele, D., Semchinova, O., Aderhold, J. and Graul, J., to be publishedGoogle Scholar