Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-20T01:05:22.367Z Has data issue: false hasContentIssue false

Characterization of a Rapid Thermal Annealed TiNxOy/TiSi2 Barrier Layer

Published online by Cambridge University Press:  25 February 2011

Sailesh Chittipeddi
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
Michael J. Kelly
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
Charles M. Dziuba
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
Anthony S. Oates
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
William T. Cochran
Affiliation:
AT&T Bell Laboratories, 555 Union Boulevard, Allentown, PA 18103
Get access

Abstract

In this paper we characterize the thin film formed by rapid thermal anneal of a magnetron sputtered titanium film in a nitrogen atmosphere. The barrier properties of this material have been characterized for both n- and p-type junctions in our CMOS technology. We have characterized the physical properties of the film using Auger, RBS and TEM analysis in the same range of temperatures, and find that as the annealing temperature is increased a better quality TiNxOy film is formed. The electromigration characteristics for Aℓ/TiNxOy/TiSi2 runners, as well as the role that this system plays in minimizing failures due to stress induced voiding are examined in this study.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Nelson, C. W., Proc. of Int. Symposium on Hybrid Microelectronics, Dallas Texas, pp. 413 (1969).Google Scholar
Ting, C. Y., Iyer, S. S., Osburn, C. M., Hu, G. J., and Schweigart, A. M., in Proc. of the First Int. Symp. on VLSI Sci. and Technol. (Electrochemical Society, New York 1982), pp. 224 and references therein.Google Scholar
[2] Kannmori, S., Thin Solid Films 136, pp. 195214, (1986).CrossRefGoogle Scholar
[3] Tang, T., Wei, C.C., Haken, R., Holloway, T., Wan, C. F., and Douglas, M., IEDM Tech. Digest, pp. 590 (1985).Google Scholar
[4] Wittmer, M., J. Vac. Sci. Tech., A3(4), pp. 1797 (1985).CrossRefGoogle Scholar
[5] Rana, V. V. S., Taylor, J. A., Holschwander, L. H., Tsai, N. S., Proc. of Workshop on Tungsten and other Refractory Materials for VLSI applications, pp. 187 (1986).Google Scholar
[6] Beensh-Marchwika, G. and Berlicki, T., Thin Solid Films 62, pp. 267 (1980).Google Scholar
[7] Matthews, A. and Teer, D. G., Thin Solid Films 52, pp. 415 (1980).Google Scholar
[8] Okamoto, T., Tsukamoto, K., Shimuzu, M., Mashito, Y. and Matsukawa, T. Dig. Symp. VLSI Tech., pp. 51 (1986),Google Scholar
Fu, K. Y., Travis, E., Sun, S.W., Grove, C. L., Pyle, R. L., Pintchovski, F., Schani, P. Proc. VMIC Conf. pp. 439 (1989). andGoogle Scholar
Gargini, P. A., Tseng, C., and Wood, M. H., Proc. 20th Ann. Rel. Phy. Symp. pp. 66 (1982).Google Scholar
[9] Wittmer, M. and Seidel, T. E., J. Appl. Phys., 49, 5287 (1978).Google Scholar
[10] Oates, A. S., (unpublished).Google Scholar
[11] Beyers, R. and Sinclair, R., J. Appl. Phys, 57, 5240 (1984).CrossRefGoogle Scholar
[12] Morgan, A. E., Broadbent, E. K. and Reader, A. H., Mat. Res. Soc. Symp., 52, 279 (1986).CrossRefGoogle Scholar