Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T06:47:31.823Z Has data issue: false hasContentIssue false

Characterization and Properties of Laser Quenched Aluminum Bronzes

Published online by Cambridge University Press:  15 February 2011

C. W. Draper
Affiliation:
+ Western Electric, P.O. Box 900, Princeton, NJ 08540
J. M. Vandenberg
Affiliation:
++ Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
C. M. Preece
Affiliation:
+++ Korrosionscentralen ATV, Park Alle 345, DK–2600 Glostrup, Denmark
C. R. Clayton
Affiliation:
++++ State University of New York at Stony Brook, Stony Brook, Long Island 11794.
Get access

Abstract

Commercial aluminum bronze (Cu-Al-Fe) alloys have been laser quenched with both continuous and pulsed CO2 laser sources. Metastable near surface regions of approximately 10 μm thickness have been produced. The quenched surfaces have been characterized by optical microscopy, SEM, EDX, AES and glancing angle XRD. The behavior of both laser quenched and “as received” conventional surfaces have been tested in both cavitation erosion and corrosion environments. In some cases significant differences are observed and can be rationalized from the microstructural changes accompanying the self quenching.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Singh, H. B., Copley, S. M. and Bass, M., Met. Trans. 12A, 138 (1981).10.1007/BF02648519Google Scholar
2.Preece, C. M. and Draper, C. W., Wear 67, 321 (1981).10.1016/0043-1648(81)90045-4Google Scholar
3.Strutt, P. R., Nowotny, H., Tuli, M. and Kear, B. H., Mater. Sci. Eng. 36, 217 (1978).10.1016/0025-5416(78)90074-5Google Scholar
4.Chan, P. W., Chan, Y. W., Hui, F. K. and Ng, H. S., J. Appl. Phys. 49, 3634 (1978).10.1063/1.325239Google Scholar
5.Seaman, F. D. and Guanamuthu, D. S., Met. Prog. 108, 67 (1975).Google Scholar
6.Anthony, T. R. and Cline, H. E., J. Appl. Phys. 49, 1248 (1978).10.1063/1.325015Google Scholar
7.Moore, P., Kim, C. and Weinman, L. S. in Applications of Lasers in Materials Processing. Metzbower, E. A. (ed.) (American Society for Metals, Ohio, 1979), pp. 259–72.Google Scholar
8.Draper, C. W. and Sharma, S. P., Thin Solid Films, 84, 333 (1981).10.1016/0040-6090(81)90165-6Google Scholar
9.Massalski, T. B., Bull. Alloy Phase Diag. 1, 27 (1981).Google Scholar
10.Draper, C. W., J. Mater. Sci., 16, 2774 (1981).Google Scholar
11.Draper, C. W. and Benko, J. W., Appl. Opt. 18, 3205 (1979).Google Scholar
12.Bradley, A. J. and Goldschmidt, H. J., J. Inst. Metals 65, 389 (1939).Google Scholar
13.Hutchison, T. S. and Reekie, J., Phys. Rev. 83, 854 (1951).10.1103/PhysRev.83.854Google Scholar
14.Jellison, J. and Klier, E. P., Trans. Met. Soc. AIME, 233, 1694 (1965).Google Scholar
15.Preece, C. M., Treatise on Materials Science and Technology Vol. 16 (Academic Press, New York, 1979), pp. 282289.Google Scholar
16.Milichenko, S. L., Bykovskiy, O. G. and Alexandrov, A. G., Fiziko-Khimicheskaya Mekhanike Materialov 4, 60 (1968).Google Scholar
17.Erdmann-Jesnitzer, F., Louis, H. and Petersen, J., Metallwiss. Tech. 31, 59 (1977).Google Scholar
18.Gabriel, M. W., Preece, C. M., Staudinger, A. and Draper, C. W., IEEE J. Quant. Elect. 17, 2000 (1981).10.1109/JQE.1981.1070645Google Scholar
19.Javadpour, J., Clayton, C. R. and Draper, C. W., presented at the fall meeting TMS-AIME, Louisville, KY, Oct. 5, 1981. to be published.Google Scholar