Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T08:57:59.465Z Has data issue: false hasContentIssue false

Characterization and Control of Surface Morphology and Defect Density for MBE GaAs Surfaces in the Production MBE Environment

Published online by Cambridge University Press:  22 February 2011

George A. Patterson
Affiliation:
Hewlett-Packard Co., Microwave Technology Division, 1412 Fountain Grove Parkway, Santa Rosa, California 95403
James S.C. Chang
Affiliation:
Hewlett-Packard Co., Microwave Technology Division, 1412 Fountain Grove Parkway, Santa Rosa, California 95403
Get access

Abstract

In the production MBE environment it is important to maintain low densities of oval defects and particle induced defects in epitaxial films that are used for the fabrication ofGaAs ICs. Most often, the grown layers are characterized on a sample basis by use of an optical microscope. The disadvantages of this technique are the time and labor involved.The data obtained is incomplete, dependent on training, and subjective. A preferred method would be to develop an inspection method that characterizes the surface morphology ofall MBE grown GaAs wafers and the resulting defect density. The use of a laser wafer surface scanning system has allowed us to reproducably inspect 100% of wafers. Rapid diagnosis of epitaxial problems has resulted in an improved understanding of how to routinely produce high quality epitaxial films for GaAs IC production. This work will highlight the production benefits derived from employing 100% inspection of MBE grown GaAs wafers and provide 2D maps. The relationship between gallium source operation and defect sizes will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Buyanov, A. V., Laurs, E.P., Peka, G.P., Semashko, E.M., and Tkachenko, V.N., Fizika Tverdogo Tela 33 (9), 27442748 (1991).Google Scholar
2 Shinohara, Masanori, Ito, Tomonori, Wada, Kazumi, and Imamura, Yoshihiro, Jpn. J. Appl. Phys. 23 (6), L371–L373 (1984).Google Scholar
3 Kawada, H., Shirayone, S. and Takahashi, K., J. Crystal Growth 128, 550556 (1993).Google Scholar
4 Takagishi, Shigenori, Yao, Hideki, and Mori, Hirotaro, J. Crystal Growth 129, 443448 (1993).Google Scholar
5 Nanbu, Kazuo, Saito, Junji, Ishikawa, Tomonori, Kondo, Kazuo, and Shibatomi, Akihiro, J. Electrochem. Soc. 133 (3), 601604 (1986).Google Scholar
6 Bedair, S.M., Humphreys, T.P., El-Masry, N.A., Lo, Y., Hamaguchi, N., Lamp, C.D., Tuttle, A.A., Dreifus, D.L., and Russell, P., Appl. Phys. Lett. 49 (15), 942944 (1986).Google Scholar
7 Matteson, S. and Shih, H.D., Appl Phys. Lett. 48 (1), 4749 (1986).Google Scholar
8 Bachrach, R. Z. and Krusor, B.S., J. Vac. Sci. Technol. 18 (3), 756764 (1981).Google Scholar
9 Wang, Y.H., Liu, W.C., Liao, S.A., Cheng, K.Y., and Chang, C.Y., Jpn. J. Appl. Phys. 24 (5), 628629 (1985).Google Scholar
10 Fujiwara, K., Nishikawa, Y., Tokuda, Y., and Nakayama, T., Appl. Phys. Lett. 48 (11), 701703 (1986).Google Scholar
11 Watanabe, Nozomu, Fukunaga, Toshiaki, Kobayashi, Keisuke L. I. and Nakashima, Hisao, Jpn. J. Appl. Phys. 24 (7), L498–L500 (1985).Google Scholar
12 Weng, Shing-Lin, J. Vac. Sci. Technol. B 5 (3), 725729 (1987).Google Scholar
13 Weng, Shang-Lin, Webb, C., Chai, Y.G., and Bandy, S.G., Appl. Phys. Lett. 47 (4), 391393 (1985).Google Scholar
14 Fronius, J H., Fisher, A. and Ploog, K., J. Crystal Growth 81, 169174 (1987).Google Scholar
15 Fronius, H., Fischer, A. and Ploog, K., Jpn. J. Appl. Phys. 25 (2), L137–L138 (1986).Google Scholar
16 Chand, Naresh and Chu, S.N.G., J. Crystal Growth 104, 485497 (1990).Google Scholar
17 Wood, C.E.C., Rathbun, L., Ohno, H., and DeSimone, D., J. Crystal Growth 51, 299303 (1981).Google Scholar
18 Schlom, D.G., Lee, W.S., Ma, T., and Harris, J.S. Jr, J. Vac. Sci. Technol. B 7 (2), 296298 (1989).Google Scholar
19 Miller, J. N., J. Vac. Sci. Technol. B 10 (2), 803806 (1992).Google Scholar
20 Lee, C.T. and Chou, Y.C., J. Crystal Growth 91, 169172 (1988).Google Scholar
21 Shinohara, Masanori and Ito, Tomonori, J. Appl.Phys. 65 (11), 42604267 (1989).Google Scholar
22 Chai, Young G. and Chow, Robert, Appl. Phys. Lett. 38 (10), 796798 (1981).Google Scholar
23 Weng, Shang-Lin, Appl. Phys. Lett. 49 (6), 345347 (1986).Google Scholar
24 Mehta, S.K., Muralidharan, R., Sharda, G.D. and Jain, R.K., Semicond. Sci. Technol. 7, 635640 (1992).Google Scholar
25 Kop'ev, P.S., Ivanov, S.V., Yegorov, A. Yu. and Uglov, D. Yu., J. Crystal Growth 96, 533540 (1989).Google Scholar
26 Kopf, R. F. and Kinsella, A.P., Ebert, C.W., J. Vac. Sci. Technol. B 9 (1), 132135 (1991).Google Scholar
27 Blakemore, J.S., J. Appl. Phys. 53 (10), R123–R181 (1982).Google Scholar
28 Hahn, P.O. and Kerstan, M.. Proc. S.P.I.E. 1009, 172181 (1988).Google Scholar
29 Hahn, P.O., Grundner, M., Schnegg, A., and Jacob, H., Applied Surface Science 39, 436456 (1989).Google Scholar