Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T07:00:37.576Z Has data issue: false hasContentIssue false

Characteristics of BST Capacitors with Aluminum Electrode and Iridium Oxide Barrier Layers

Published online by Cambridge University Press:  01 February 2011

Thottam Kalkur
Affiliation:
kalkur@eas.uccs.edu, University of Colorado at Colorado Springs, ECE, 1420, Austin Bluff Parkway, Colorado Springs, CO, 80933, United States
Troung Troung
Affiliation:
troung@eas.uccs.edu, University of Colorado at Colorado Springs, ECE, Colorado Springs, CO, 80933-7150, United States
Get access

Abstract

The high frequency operation of BST capacitors necessitates the development of low series resistance electrodes. As an alternative to platinum, DC magnetron sputtered IrO2/Aluminum top electrode metallization for BST capacitors has been proposed. The capacitance voltage characteristics of BST capacitors did not change significantly due to the deposition of aluminum on iridium oxide. Post annealing in nitrogen environment shows that IrO2/Al metallization does not degrade annealing temperature up to 450 oC.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Kingon, A.I., Streiffer, S.K., Baseri, C. and Sommerfelt, S.R., MRS Bulletin, 21, 7, 46 (1996).Google Scholar
2) Fitsilis, F., Regenery, S., Ehrhart, P., Waser, R., Schienle, F., Scumacher, M. and Juergensen, H., Integrated Ferroelectrics, vol. 38, 211220 (2001).Google Scholar
3) Chang, W.T., Horwitz, J.S., Carter, A.C., Fond, J.M., Kirchoefer, S.W., Gilmore, C.M. and Christey, D.B., Appl. Phys. Lett., 74, 1033 (1999).Google Scholar
4) Kotecki, D.E., Baneicki, J.D., Shen, H., Liabowitz, R.B., Saenger, K.L., Lian, J.J., Shaw, T.M., Athavale, S.D., Cabral, C. Jr, Duncombe, P.R., Gutsche, M., Kunkel, G., Park, Y.-J., Wang, Y.-Y. and Wise, R., IBM Journal of Research and Development, vol.43, no.3, 367 (1999).Google Scholar
5) Baniecki, J. D, Laibowitz, R. B, Shaw, T. M, Saenger, K. L, Duncombe, P. R, Cabral, C., Kotecki, D. E, Shen, H., Lian, J., and Ma, Q. Y, “Effects of Annealing Conditions on Charge Loss Mechanisms in MOCVD Ba0.7Sr0.3TiO3 Thin Film Capacitors,” J. Eur. Ceram. Soc. 19, No. 6-7, 1457 (1999).Google Scholar
6) Uyemura, John P., Chip Design For Submicron VLSI, Thomson publishers, 2006.Google Scholar
7) Lee, Thomas H., The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge, 2004.Google Scholar
8) Samavati, H., Hajmiri, A., Shahni, A.R., Nasserbakht, G.N. and Lee, Thomas, IEEE Journal of Solid State Circuits, vol.33, no.12, 1998.Google Scholar
9) Fan, W., Saha, S., Calisle, J.A., Auciello, O., Chang, R.P.H. and Ramesh, R., Applied Physics letters, vol.82, no.9, 1452 (2003).Google Scholar
10) Kalkur, Thottam S, Whitescarver, Jeff and Cramer, Nick, MRS Proceedings, Spring 2006, paper no. 0928-GG14-10.Google Scholar
11) Cornish, L.A., Suss, R., Watson, A., Prins, S.A., Proceedings of international platinum conference, 91101 (2006).Google Scholar
12) Cross, J. S., Kurihara, K. and Haneda, H., J. Appl. Phys., 98, 094107 (2004).Google Scholar
13) Yi, W.C., Kalkur, T.S., Phiofsky, Elliott and Kammerdiner, L., Thin Solid Films, vol.402, 1-2, 307 (2002).Google Scholar
14) Figueroa, M.Z., Hesiquio, M., Garduno, E.M., Estrada, A., Garcia Vargas, MRS Proceedings, vol. 885E, 088-A-09-13.1, 2006.Google Scholar
15) Liu, P.C., Ho, W.S., Huang, Y.S., Ting, K.K., Journal of Material Research, Vol.13, no.5, 13181326 (1998).Google Scholar