Skip to main content Accessibility help

Characterisation of the Subthreshold Damage in MeV Ion Implanted p Si

  • Shabih Fatima (a1), Jennifer Wong-Leung (a1), John Fitz Gerald (a2) and C. Jagadish (a1)


Subthreshold damage in p-type Si implanted and annealed at elevated temperature is characterized using deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). P-type Si is implanted with Si, Ge and Sn with energies in the range of 4 to 8.5 MeV, doses from 7 × 1012to 1×1014cm−2and all annealed at 800°C for 15 min. For each implanted specie, DLTS spectra show a transition dose called threshold dose above which point defects transform in to extended defects. DLTS measurements have shown for the doses below threshold, a sharp peak, corresponding to the signature of point defects and for doses above threshold a broad peak indicating the presence of extended defects. This is found to be consistent with TEM analyses where no defects are seen for the doses below threshold and the presence of extended defects for the doses above threshold. This suggests a defect transformation regime where point defects present below threshold are acting like nucleating sites for the extended defects. Also the mass dependence on the damage evolution has been observed, where rod-like defects are observed in the case of Si and (rod-like defects and loops) for Ge and Sn despite the fact that peak concentration of vacancies for Ge and Sn are normalized to the peak number of vacancies for Si.



Hide All
1. Stolk, P.A., Gossmann, H. J., Eaglesham, D. J., Jacobson, D.C., Poate, J. M., and Luftman, H. S., Appl. Phys. Lett. 66, 568 (1995).
2. Gossmann, H. J., Rafferty, C. S., Luftman, H. S., Unterwald, F. C., Boone, T., and Poate, J. M., Appl. Phys. Lett. 63, 639 (1993).
3. Cowern, N. E. B., Janssen, K. T. F., and Jos, H. F. F., J. Appl. Phys. 68, 6191 (1990).
4. Tamura, M., Natsuaki, N., Wada, Y., and Mitani, E.. Nucl. Instrum. Methods Phys. Res. B 21. 438 (1987).
5. Jones, K. S., Prussin, S., and Weber, E. R., Appl. Phys. A 45, 1 (1988).
6. Lalita, J., Ph.D thesis, Royal Institute of Technology, Sweden (1997).
7. Hay, H. J., Fastrim is a modified version of TRIM85-90 which takes into account the multilayer target (interfaces) problems inherent with TRIM (unpublished).
8. Ziegler, J. F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids, edited by Ziegler, J. F. (Pergamon, New York, 1985).
9. Ferreira Lima, C. A. and Howie, A., Philos. Mag. 34, 1057 (1976).
10. Benton, J. L., Libertino, S., Kringh∼j, P., Eaglesham, D. J., and Poate, J. M., J. Appl. Phys. 82, 1, (1997).
11. Fatima, S., Wong-Leung, J., Fitz Gerald, J. and Jagadish, C., Appl. Phys. Letters (submitted).
12. Schreutelkamp, R. J., Custer, J. S., Liefting, J. R., Lu, W. X., and Saris, F. W., Mater. Sci. 12. Rep. 6, 275 (1991).
13. Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).
14. Eaglesham, D. J., Stolk, P. A., Gossman, H. -J., Haynes, T. E., Poate, J. M.. Nucl. Instrum. Methods B 106, 191 (1995).
15. Caturla, M. J., Diaz de la Rubia, T. and Gilmer, George H., NIMB 106, 1 (1995).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed