Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-28T17:59:40.086Z Has data issue: false hasContentIssue false

The Characterisation of Interfacial Dislocation Structures

Published online by Cambridge University Press:  21 February 2011

W. A. T. Clark*
Affiliation:
Department of Metallurgical Engineering The Ohio State University 116 West 19th Avenue Columbus, OH 43210
Get access

Abstract

Experimental observation of many interfaces in metals indicate the presence of a dislocation-like structure. The geometrical basis for such a structure to exist is discussed, and the suitability of the transmission electron microscope (TEM) to characterise it considered. It is shown by reference to examples of grain and phase boundary structures in metals that such geometrical models may be used as a first step to predicting interfacial structures, and that the dislocations observed may play a role in thermo-mechanical behaviour of polycrystals. The general applicability of the applicability of the approach to non-metallic systems, such as semiconductors and ceramics is also indicated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grain Boundary Structure and Kinetics, Balluffi, R.W.,ed.(ASM,Ohio,1980).Google Scholar
2. Bollmann, W., Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berlin 1970).Google Scholar
3. Smith, D.A. and Pond, R.C., Int. Metal. Reviews, 21, 61 (1976).Google Scholar
4. Pond, R.C. and Bollmann, W., Phil. Trans. Roy. Soc. Lond., 292, 449 (1979).Google Scholar
5. Amelinckx, S. and Dekeyser, W., Solid St. Phys., 8, 325 (1959).Google Scholar
6. Grimmer, H., Bollmann, W. and Warrington, D.H., Acta. Cryst A, 30, 197 (1974).Google Scholar
7. Knowles, K.M., Smith, D.A. and Clark, W.A.T., Scripta Met., 16, 413 (1982).Google Scholar
8. Smith, D.A., Knowles, K.M., Aaronson, H.I. and Clark, W.A.T. in: Solid-Solid Phase Transformations (AIME, Warrendale, PA, 1983) pp. 587590.Google Scholar
9. Clark, W.A.T., D.Phil. Thesis, University of Oxford (1976).Google Scholar
10. Heilmann, P., Clark, W.A.T. and Rigney, D.A., Ultramicroscopy, 9, 365 (1982).Google Scholar
11. Bollmann, W., Michaut, B. and Sainfort, G., Phys.Stat.Sol.(a),13,637(1972).Google Scholar
12. Mackenzie, J.K., Acta. Cryst., 10, 61 (1957).CrossRefGoogle Scholar
13. Smith, D.A. and Goringe, M.J., Phil. Mag., 25, 1505 (1972).Google Scholar
14. Sass, S.L. and Bristowe, P. D., in ref [1],pp. 71–114.Google Scholar
15. Carter, C.B., Donald, A.M. and Sass, S.L., Phil. Mag. A,41, 467 (1980).Google Scholar
16. Hall, E., Walter, J.E. and Briant, C.L., Phil. Mag. A,45 ,753 (1982).CrossRefGoogle Scholar
17. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W. and Whelan, M.J., Electron Microscopy of Thin Crystals (Butterworths, London 1965).Google Scholar
18. Clark, W.A.T., Pond, R.C. and Smith, D.A. in: Proceedings of EMAG 1975 (Academic Press, London, 1976) pp. 433–36.Google Scholar
19. Clark, W.A.T. and Smith, D.A. in: Grain Boundaries (Inst. of Metallurgists, London, 1976) pp. A35–A39.Google Scholar
20. Krivanek, O.L., Isoda, S., and Kobayashi, K., Phil. Mag., 36, 931 (1977).Google Scholar
21. Smith, D.A and Goodhew, P.J., Phil. Mag. A,46, 161 (1982).Google Scholar
22. Smith, D.A., this volume.Google Scholar
23. Clark, W.A.T. and Smith, D.A., Phil. Mag. A,38, 367 (1978).Google Scholar
24. Clark, W.A.T. and Smith, D.A., J. Matls. Sci., 14, 776 (1979).Google Scholar
25. Pond, R.C., Smith, D.A., and Southerdon, P.W.J., Phil.Mag. A,37, 27(1978).Google Scholar
26. Guha, A.G., Clark, W.A.T., and Aaronson, H.I., Met. Trans., in press.Google Scholar
27. Plichta, M.R., Ph.D. Thesis, Michigan Technological University, 1979.Google Scholar