Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-25T20:01:32.614Z Has data issue: false hasContentIssue false

Changes in u(VI) SPeciation Upon Sorption onto Montmorillonite from Aqueous and Organic Solutions

Published online by Cambridge University Press:  25 February 2011

Catherine Chisholm-Brause
Affiliation:
Isotope and Nuclear Chemistry Division Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA
Steven D. Conradson
Affiliation:
Isotope and Nuclear Chemistry Division Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA
P. Gary Eller
Affiliation:
Isotope and Nuclear Chemistry Division Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA
David E. Morris*
Affiliation:
Isotope and Nuclear Chemistry Division Los Alamos National Laboratory Los Alamos, New Mexico 87545, USA
*
*author to whom correspondence should be addressed
Get access

Abstract

The speciation of UO22+ and UO22+/ TBP mixtures has been investigated in solution and intercalated with the reference smectite clay SAz-1 using x-ray absorption, Raman, andluminescence spectroscopies. Neither aquated UO22+ nor its TBP complex undergoes any detectable changes in uranium oxidation state on intercalation. Further, at the pH values employed in this work, there is no evidence for hydrolysis of the uranium species to generate dimeric or higher order uranium oligomers. However, we do find indications that the structures of the solution complexes are altered on intercalation, particularly for the UO22+TBP system and for more dilute UO22+/aqueous systems. In addition, several lines of evidence suggest that, at the loading levels used in this study, the uranyl species is interacting with two or more spectroscopically distinguishable sites on SAz-1.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schulz, W.W.; Navratil, J.D.; Talbot, A.E. (eds.) Science and Technology of Tributyl Phospate, Volumes 1–3, CRC Press, Columbus, (1984).Google Scholar
2. Katz, J.J.; Seaborg, G.T.; Morss, L.R. (eds.) Chemistry of the Actinide Elements, Volumes 1 and 2, Chapman and Hall, New York (1986).Google Scholar
3. Killian, T.H. Kolb, N.L.; Corbo, P.; Marine, I.W. “Environmental Information Document. H-Area Seepage Basin”, Savannah River Laboratory Report DPST-85-706.Google Scholar
4. Francis, A.J.; Iden, C.R.; Nine, B.J.; Chang, C.K. Nucl. Tech, 1980, 50, 158.Google Scholar
5. Valenti, P.J.; McVay, C.W.; Bourgeois, P. Trans. Amer. Nucl. Soc., 1986, 52, 55.Google Scholar
6. Stenner, R.D.; Cramer, K.H.; Higley, K.A.; Jette, S.J.; Lamar, D.A.; McLaughlin, T.J.; Sherwood, D.R.; Van Houten, N.C. Pacific Northwest Laboratory report PNL-6456, Vol. 3 (1988).Google Scholar
7. Merritt, R.C.The Extractive Metallurgy of Uranium”, Colorado School of Mines Research Institute Golden, CO (1971).Google Scholar
8. Weigel, F. in Chemistry of the Actinide Elements, Katz, J.J.; Seaborg, G.T.; Morss, L.R. (eds.) Chapman and Hall, New York (1986), Chapter 5.Google Scholar
9. U.S. D.O.E. Report #FMPC-0306-2.Google Scholar
10. Eller, P.G.; Morris, D.E.; Buscher, C.T.; Bish, D.E.; King, C.B., to be submitted to Environ. Sci. Tech.Google Scholar
11. Coyne, L.M.; McKeever, S.W.S. in Spectroscopic Characterization of Mifierals and Their Surfaces. Coyne, L.M., McKeever, S.W.S., and Blake, D. F. (eds.), ACS Press, Washington, DC (1990), Chapter 1.CrossRefGoogle Scholar
12. Hochella, M.F. Jr.; White, A.F. (eds.) Mineral-Water Interface Geochemistry, Mineralogical Society of America, Washington, DC (1990).CrossRefGoogle Scholar
13. Koningsberger, D.C.; Prins, R. (eds.) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, John Wiley and Sons, New York (1988).Google Scholar
14. Brown, G.E. Jr.; Calas, G.; Waychunas, G.A.; Petiau, J. In: Spectroscopic Methods in Mineralogy and Geology, Mineralogical Society of America, Washington, DC (1990), pp.431512.Google Scholar
15. Ohwada, K.J. Coord. Chem. 1978, 8, 35.Google Scholar
16. Brooker, M.H.; Huang, C.-H.; Sylwestrowicz, J.J. Inorg. Nucl. Chem. 1980, 42, 1431.CrossRefGoogle Scholar
17. Toth, L.M.; Begun, G.M. J. Phys. Chem. 1981, 85, 547.Google Scholar
18. Madic, C.; Hobart, D.E.; Begun, G.M. Inorg. Chem. 1983, 22, 1494.Google Scholar
19. Bell, J.T.; Biggers, R.E. J. Molec. Spec. 1965, 18, 247; ibid 1967, 22, 262; ibid 1968, 25, 312.Google Scholar
20. Van Olphen, H.; Fripiat, J.J. (eds.) Data Handbook for Clay Materials and Other Non-Metallic Minerals Pergaman Press, New York (1980).Google Scholar
21. Bish, D.L US.DOE/OCRWM Yucca Mountain Project Report 1989 TWS-ESS-DP-25.Google Scholar
22. Teo, B.K.; Joy, D.C. (eds.) EXAFS Spectroscopy: Techniques and Applications Plenum Press, New York (1981)Google Scholar
23. Mustre de Leon, J.; Rehr, J.J.; Zabinsky, S.I.; Albers, R.C. Phys. Rev. B 1991, 44, 4146.Google Scholar
24. Baes, C.F.; Mesmer, R.E. The Hydrolysis of Cations Wiley, New York (1976), pp. 177182.Google Scholar
25. This energy difference does not by itself represent compelling evidence for the absence of a hydrolysis mechanism. However, the emission data for this sample (see text) are dramatically different from those of the hydrolytic species (Ref. 17) and do rule out the hydrolysis mechanism in this case.Google Scholar
26. Taylor, J.C.; Mueller, A. Acta Cryst. 1965, 19, 536.Google Scholar