Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-16T17:12:46.516Z Has data issue: false hasContentIssue false

Changes in Electronic Device Properties During the Formation of Dislocations

Published online by Cambridge University Press:  25 February 2011

F. M. Ross
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. Hull
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
D. Bahnck
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
J. C. Bean
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
L. J. Peticolas
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
R. R. Kola
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
C. A. King
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Get access

Abstract

We describe the results of an investigation into the formation and properties of dislocations in electronic devices. We have made electron transparent specimens from metastable GeSi/Si p-n junction diodes and introduced dislocations into the devices by heating in situ in the electron microscope. A modification made on the specimen holder for our microscope enables us to measure the characteristics of these devices while they remain under observation in the microscope. We can therefore observe the changes in the electrical properties of the devices as dislocations form. We confirm that the introduction of dislocations has a deleterious effect on parameters such as the reverse leakage current through a diode. However the magnitude of the effect we observe can not be explained by a generation-recombination process and instead we suggest a model based on the creation of point defects or the diffusion of metals during the formation of dislocations. We also consider the kinetics of dislocation formation, and in particular how the extent of dislocation formation in a device depends on the subsequent processing steps which it undergoes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sze, S. M., Semiconductor Devices: Physics and Technology, Wiley, N.Y. (1985)Google Scholar
2. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974); 32, 265 (1974)Google Scholar
3. Hull, R., Bean, J. C., Werder, D. J. and Leibenguth, R. E., Appl. Phys. Lett. 52, 1605 (1988)CrossRefGoogle Scholar
4. Ross, F. M., Hull, R., Bahnck, D., Bean, J. C., Peticolas, L. J. and King, C. A., to appear in Appl. Phys. Lett. (1993)Google Scholar
5. Hirth, J. P. and Lothe, J., Theory of Dislocations, McGraw-Hill, N. Y. (1968)Google Scholar
6. Hull, R., Bean, J. C., Bahnck, D., Peticolas, L. J., Short, K. T. and Unterwald, F. C., J. Appl. Phys. 70, 2052(1991)CrossRefGoogle Scholar
7. Oldham, W. and Milnes, A., Solid State Electronics 7, 153 (1964)CrossRefGoogle Scholar
8. Patel, J. R. and Kimmerling, L. C., Crystal Research and Tech. 16, 187 (1981)CrossRefGoogle Scholar
9. Miller, K. M., Ingle, K. W. and Crocker, A. G., Acta Met. 29, 1599 (1981)CrossRefGoogle Scholar
10. Huang, J., Meyer, M. and Pontikis, V., Phil. Mag. A 63, 1149 (1991)Google Scholar
11. Kisielowski-Kemmerich, C. and Alexander, H., in Proc. V International Symposium on Structure and Properties of Dislocations in Semiconductors, Moscow (1986)Google Scholar
12. Higgs, V., Goulding, M. R., Brinklow, A. and Kightley, P., Appl. Phys. Lett. 60, 1369 (1992)Google Scholar
13. Radzimski, Z. J., Zhou, T. Q., Buczkowski, A., Rozgonyi, G. A., Finn, D., Hellwig, L. G. and Ross, J. A., Appl. Phys. Lett. 60, 1096 (1992)Google Scholar
14. Murarka, S. P., Silicidesfor VLSI applications, Academic Press, Orlando (1983)Google Scholar
15. Kola, R. R., Celler, G. K., Frakoviak, J., Jurgensen, C. W. and Trimble, L. E., J. Vac. Sci. and Tech. B 9, 3301 (1991)Google Scholar
16. Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 1325 (1987)Google Scholar
17. Harris, J. M., Lau, S. S., Nicolet, M.-A. and Nowicki, R. S., J. Elect. Soc. 123, 120 (1976)Google Scholar
18. Babcock, S. E. and Tu, K. N., J. Appl. Phys. 53, 6898 (1982)Google Scholar
19. Fitzgerald, E. A., Kirchner, P. D., Proano, R., Pettit, G. D., Woodall, J. M. and Ast, D. G., Appl. Phys. Lett. 52, 1496 (1988)Google Scholar
20. Fitzgerald, E. A., Xie, Y.-H., Brasen, D., Green, M. L., Michel, J., Freeland, P. E. and Weir, B. E., J. Electronic Materials 19, 949 (1990)Google Scholar
21. Fischer, A., Cryst. Res. and Tech. 18, 1415 (1983)Google Scholar