Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T09:58:59.759Z Has data issue: false hasContentIssue false

Cellular Ceramic Substrates

Published online by Cambridge University Press:  15 February 2011

Jimmie L. Williams
Affiliation:
Corning Inc., Corning, NY 14831
Irwin M. Lachman
Affiliation:
Corning Inc., Corning, NY 14831
M.D. Patil
Affiliation:
Corning Inc., Corning, NY 14831
Donald L. Guile
Affiliation:
Corning Inc., Corning, NY 14831
Get access

Abstract

Ceramic materials in monolithic honeycomb form offer the advantage of low pressure drop for automotive & stationary emissions control reactors, catalytic oxidation, adsorption, separation, and other applications. The ceramic materials can be extruded into cellular monoliths or coated onto a cellular ceramic substrate using conventional “washcoat” processes. Both extruded and coated ceramic substrates are prepared with a binder to promote interparticle adhesion and strength. For many applications it is advantageous to control pore structure, density, strength and surface area.

In this paper composition, fabrication and physical properties of cellular monolithic substrates will be reviewed. Emphasis will be on extruded materials used as catalytic supports for automotive, DeNOx and oxidation reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. CAPoC 2, 2nd International Congress on Catalysis and Automotive Pollution Control, Universite Libre de Bruxelles, Belgium, 10–13 Sept. 1990.Google Scholar
2. Proceedings of the 87th Annual Meeting of the A&WMA, Cincinnati, Ohio, 19 June 1994.Google Scholar
3. Lachman, I.M. and Williams, J.L., Catalysis Today, 14, 317 (1992).Google Scholar
4. Irandoust, S. and Andersson, B., Catal. Rev.-Sci. Eng., 30 (3) (1988).Google Scholar
5. Lachman, I.M., Spechsaal, 119 (12) 116–19 (1986).Google Scholar
6. Abrams, R.F. and Goldsmith, R.L., Paper No. 93-RP-138.04, Proceedings of the 86th Annual A&WMA, Denver, CO, 1993.Google Scholar
7. Crompton, D. and Gupta, A., Paper No. 93-TP-31B.06, Proceedings of the 86th Annual A&WMA, Denver, CO, (1993).Google Scholar
8. Patil, M.D. and Lachman, I.M., in Perpectives in Molecular Sieve Science, ACS Symposium Series 386, edited by Flank, W.H. and Whyte, T.E. Jr., (American Chemical Society, Washington, D.C., 1988) pp 492499.Google Scholar
9. Kollmann, K., Abthoff, J., and Zahn, W., SAE Paper No. 940469.Google Scholar
10. Heimrich, M.J. and Deviney, M.L., SAE Paper No. 9307346.Google Scholar
11. Monroe, D.R., DiMaggio, C.L., and Beck, D.D., SAE Paper No. 930737.Google Scholar
12. Socha, L.S., Jr. and Thompson, D.F., SAE Paper No. 920093.Google Scholar
13. Mizuno, H., Abe, F., Hashimoto, S., and Kondo, T., SAE Paper No. 940466.Google Scholar
14. Heimrich, M.J., Smith, L.R., and Kitowski, J., SAE Paper No. 920847.Google Scholar
15. Engler, B.H., Lindner, D., Lox, E.S., Ostgathe, K., Sindlinger, A., and Muller, W., SAE Paper No. 930738.Google Scholar
16. Hochmuth, J.K., Burk, P.L., Tolentino, C., and Mignano, M.J., SAE Paper No. 930739.Google Scholar
17. Heck, R.M., Chen, J.M., and Speronello, B.K., Paper No. 93-MP-7.01, Proceedings of the 86th Annual A&WMA, Denver, CO, (1993).Google Scholar
18. Matsushita, K. and Kenshi, T., U.S. Patent No. 4 010 238 (1988).Google Scholar
19. Nakajima, F. et al., U.S. Patent No. 4 085 193 (1978).Google Scholar
20. Abe, L. and Nakatsuji, T., U.S. Patent No. 4 520 124 (1985).Google Scholar
21. Lachman, I.M., Bagley, R.D., and Lewis, R.M., bulletin of the Amer. Cer. Soc., 69 (2), 202205 (1981).Google Scholar
22. Sugiura, K. and Kuroda, Y., J. Ceramic Assoc. of Japan, 63, 579 (1955).Google Scholar
23. Heck, R.M., Bonacci, J.C., and Chen, J.M., Paper No. 87–52.3, Proceedings of the 80th Annual A&WMA, New York, NY, (1993).Google Scholar
24. Czarnecki, L.J., Libanai, C., and Rieck, J.S., Paper No. 94-RP131.06, Proceedings of the 87th Annual A&WMA, Cincinnati, Ohio (1994).Google Scholar
25. Lachman, I.M., Patil, M.D., Williams, J.L., and Wusirika, R.R., U.S. Patent No. 4 912 077 (1990).Google Scholar
26. Kiovsky, M.J., Koradia, P.B., and Lim, C.T., Ind. Eng. Chem. Prod. Res. Dev., 19, 218 (1980).Google Scholar
27. Williams, J.L. and Lachman, I.M., Man and His Ecosystem, Proceeding of the 8th World Congress, Vol. 4, pp 351356, Elsevier, Amsterdam (1989).Google Scholar
28. Brown, S.M. and Woltermann, G.M., U.S. Patent No. 4 157 375 (1979).Google Scholar
29. Lachman, I.M. and Patil, M.D., U.S. Patent No. 4 800 187 (1989).Google Scholar
30. Stenger, H.G. Jr., Meyer, E.C., Hepburn, J.S. and Lyman, C.E., Chem. Eng. Sci., 43 (8), 2067 (1988).Google Scholar
31. Elkington, W.T., M.S. thesis, Brigham Young University, 1989.Google Scholar