Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T14:17:59.622Z Has data issue: false hasContentIssue false

Cation Transport and Surface Reconstruction in Lanthanum Doped Strontium Titanate at High Temperatures

Published online by Cambridge University Press:  11 February 2011

Karsten Gömann
Affiliation:
Institut für Metallurgie, Technische Universität Clausthal, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld, Germany
Günter Borchardt
Affiliation:
Institut für Metallurgie, Technische Universität Clausthal, Robert-Koch-Str. 42, D-38678 Clausthal-Zellerfeld, Germany
Anissa Gunhold
Affiliation:
Institut für Physik und Physikalische Technologien, Technische Universität Clausthal, Leibnizstr. 4, D-38678 Clausthal-Zellerfeld, Germany
Wolfgang Maus-Friedrichs
Affiliation:
Institut für Physik und Physikalische Technologien, Technische Universität Clausthal, Leibnizstr. 4, D-38678 Clausthal-Zellerfeld, Germany
Bernard Lesage
Affiliation:
Laboratoire d'Etude des Matériaux Hors Equilibre, Université Paris-Sud, F-91405 Orsay Cedex, France
Odile Kaïtasov
Affiliation:
Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, Université Paris-Sud, F-91405 Orsay Cedex, France
Horst Baumann
Affiliation:
Institut für Kernphysik, J. W. Goethe-Universität, August-Euler-Str. 6, D-60486 Frankfurt, Germany
Get access

Abstract

Tracer diffusion experiments were carried out in synthetic air at 1573 K in SrTiO3(100) and (110) single crystals, which were either undoped or doped with up to 1 at.% La, respectively. Tracer sources of 139La and 142Nd were applied by ion implantation. The resulting depth profiles were measured by SIMS. The reconstruction of the surface was monitored ex-situ using microscopic and spectroscopic methods including SEM, EPMA, and AFM. The measured tracer diffusivities show no dependency on orientation. The tracer diffusion takes place via cation vacancies. Under oxidizing conditions the dopant is compensated by Sr vacancies. Hence the diffusion is increasing strongly with La concentration. The observed time dependency of the diffusivities may be related to a space charge layer postulated by the current defect chemistry model for donor doped SrTiO3. At high dopant concentrations annealing leads to segregation of bulk La to the surface. La is not significantly incorporated into the secondary crystallites at the surface which consist almost entirely of Sr and O.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moos, R. and Härdtl, K. H., J. Am. Ceram. Soc. 80, 2549 (1997).Google Scholar
2. Kröger, F. A. and Vink, H. J., Solid State Phys. 3, 307 (1956).Google Scholar
3. Szot, K., Speier, W., Breuer, U, Meyer, R., Szade, J., and Waser, R., Surf. Sci. 460, 112 (2000).Google Scholar
4. Wei, Han, Maus-Friedrichs, W., Lilienkamp, G., Kempter, V., Helmbold, J., Gömann, K., and Borchardt, G., J. Electroceram. 8, 221 (2002).Google Scholar
5. Ruddlesden, S. N. and Popper, P., Acta Cryst. 11, 54 (1958).Google Scholar
6. Gunhold, A., Gömann, K., Beuermann, L., Frerichs, M., Borchardt, G., Kempter, V., and Maus-Friedrichs, W., Surf. Sci. 507–510, 447 (2002).Google Scholar
7. Meyer, R., Waser, R., Helmbold, J., and Borchardt, G., Phys. Rev. Lett. (revised).Google Scholar
8. Szot, K. and Speier, W., Phys. Rev. B 60, 5909 (1999).Google Scholar
9. Gunhold, A., Beuermann, L., Frerichs, M., Kempter, V., Gömann, K., Borchardt, G., and Maus-Friedrichs, W., Surf Sci. (2002) (in press).Google Scholar
10. Gunhold, A., Gömann, K., Beuermann, L., Kempter, V., Borchardt, G., and Maus-Friedrichs, W., Anal. Bioanal. Chem. (submitted)Google Scholar
11. Helmbold, J., PhD thesis, Technische Universität Clausthal, Germany (2001).Google Scholar
12. Poignant, F., PhD thesis, Université de Limoges, France (1995).Google Scholar
13. Rhodes, W. H. and Kingery, W. D., J. Am. Ceram. Soc. 49, 521 (1966).Google Scholar
14. Akhtar, M. J., Akhtar, Z.-U.-N., Jackson, R. A., and Catlow, C. R. A., J. Am. Ceram. Soc. 78, 421 (1995).Google Scholar
15. Meyer, R., Szot, K., and Waser, R., Ferroelectrics 224, 751 (1998)Google Scholar
16. Ryssel, H. and Ruge, I., Ion Implantation (Wiley, Chichester, 1986), chapter 2.1.Google Scholar