Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-26T06:05:56.966Z Has data issue: false hasContentIssue false

Cathodoluminescence and microRaman study of GaN ELO structures

Published online by Cambridge University Press:  11 February 2011

O. Martínez
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., 47011, Valladolid, Spain
M. Avella
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., 47011, Valladolid, Spain
J. Jiménez
Affiliation:
Dpto. Física de la Materia Condensada, E.T.S.I.I., 47011, Valladolid, Spain
B. Gérard
Affiliation:
THALES Research and Technology, Domaine de Corbeville, 91404 Orsay, France
S. Galloway
Affiliation:
Gatan UK, Ferrymills 3, Osney Mead, Oxford, OX2 0ES, United Kingdom
Get access

Abstract

Epitaxial Lateral Overgrowth (ELO) is an effective method to reduce dislocations in heterostructures with large lattice mismatch. This method has been widely used to improve the quality of GaN layers. We present herein a study of the properties of ELO GaN layers grown by HVPE from an MOVPE GaN buffer layer. Cathodoluminescence shows a strong enhancement of the luminescence emission in the ELO regions, where TEM has proven the absence of dislocations. Local cathodoluminescence spectra show that this enhancement is mostly due to the yellow luminescence band. Besides Donor-Acceptor Pair recombination bands are observed in the near band gap spectral range. Raman data show that the ELO layers present a good crystalline quality. The Raman spectra did not reveal the presence of free carriers in concentration high enough to allow the presence of Longitudinal Optic Phonon Plasmon Coupled modes. The results are discussed in terms of the incorporation of impurities in the ELO layers together with the formation of compensating deep acceptors, probably VGa.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kucheyev, S. O., Toth, M., Phillips, M. R., Williams, J. S., Jagadish, C., and Li, G., J. Appl. Phys. 91, 5867 (2002).Google Scholar
Hamdami, F., Appl. Phys. Lett. 70, 464 (1997).Google Scholar
Grieshaber, W., Schubert, E. F., Goepfert, I. D., Karlicek, R. F., Schuman, M. J., and Trau, C., J. Appl. Phys. 80, 4615 (1996).Google Scholar
4. Ponce, F. A., Bour, D.P., Gotz, W., and Wright, P. J., Appl. Phys. Lett. 68, 57 (1996).Google Scholar
5. Hoffmann, A.; Advances in Solid State Physics 36, 33 (1997).Google Scholar
6. Lee, I. H., Choi, I. H., Lee, C. R., and Noh, S. K., Appl. Phys. Lett. 71, 1359 (1997).Google Scholar
7. Neugebauer, J., and Van de Walle, C., Appl. Phys. Lett. 69, 503 (1996).Google Scholar
8. Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A. A., Jpn J. Appl. Phys. Part 2, 36, L899 (1997).Google Scholar
9. Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Salvador, A., Sverdlov, B. N., Botchkarev, A., and Morkoc, H., Appl. Phys. Lett. 66, 3474 (1995).Google Scholar
10. Kirillov, D., Lee, H., and Harris, J.S., J. Appl. Phys. 80, 4058 (1996).Google Scholar
11. Demangeot, F., Frandon, J., Renucci, M. A., Briot, O., Gil, B., and Aulombard, R. L., Sol. St. Commun. 100, 207 (1996).Google Scholar
12. Perli, P., Camassel, J., Knap, W., Taliercio, T., Chevrin, J. C., Suski, T., Grzegory, I., and Porowski, S., Appl. Phys. Lett. 67, 2524 (1995).Google Scholar
13. Demangeot, F., Gleize, J., Frandon, J., Renucci, M. A., Kuball, M., Peyrade, D., Manin-Ferlazzo, L., Chen, Y., and Grandjean, N., J. Appl. Phys. 91, 207 (1996).Google Scholar