Skip to main content Accessibility help

Cartilage: Biomimetic Study of the Extracellular Matrix

  • Chinedu I. Anyaeji (a1), Peter J. Basser (a1) and Ferenc Horkay (a1)


Cartilage is a complex biological tissue that exhibits gel-like behavior. Its primary biological function is providing compressive resistance to external loading and nearly frictionless lubrication of joints. In this study, we model cartilage extracellular matrix using a biomimetic system. We demonstrate that poly(vinyl) alcohol (PVA) hydrogels are robust biomaterials exhibiting mechanical and swelling properties similar to that of cartilage extracellular matrix. A comparison is made between the macroscopic behavior of PVA gels and literature data reported for cartilage.



Hide All
1. Mow, V.C., Zhu, W. and Ratcliffe, A., Structure and function of articular cartilage and meniscus, in Basic Orthopedic Biomechanics, eds. Mow, V.C., and Hayes, W.C., Raven Press, New York, 1991.
2. Campbell, N.A., Reece, J.A. and Simon, E.J., Essential Biology with Physiology (2nd Edition), San Francisco: Jossey Bass, 2004.
3. Dijkgraaf, L.C., De Bont, L.G.M., Boering, G. and Liem, R.S.B., Normal cartilage structure, biochemistry, and metabolism. Journal of Oral and Maxilofacial Surgery 53, 924929 (1995).
4. Hansson, T.. Öberg, T., Carlsson, G.E. and Kopp, S.: Thickness of the soft tissue layers and the articular disk in the temporomandibular joint. Acta Odontologica Scandinavica 35, 7783 (1977).
5. Ogston, A.G., Intracellular Matrix: The Biological Functions of the Glycosaminoglycans (Andre, A. B., Ed.), Vol. 3, Academic Press, New York, 1970.
6. Van der Rest, M., and Mayne, R., Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J. Biot. Chem. 263, 16151618 (1988).
7. Poole, A.R., Pidoux, I., Reiner, A. and Rosenberg, L.. An immunoelectron microscope study of the organization of proteoglycan monomer, link protein, and collagen in the matrix of articular cartilage. J. Cell Biol. 93, 921937 (1982).
8. Heinegard, D. and Hascall, V.C.. Aggregation of cartilage proteoglycans III. Characteristics of the proteins isolated from trypsin digest of aggregates. J. BioL. Chem. 249, 42504256 (1974).
9. Tang, L.H., Rosenberg, L., Reiner, A. and Poole, A.R., Proteoglycans from bovine nasal cartilage. Properties of a soluble form of link protein. J. Biol. Chem. 25, 1052310531 (1979).
10. Mow, V.C., Zhu, W., Lai, W.M., Hardingham, T.E., Hughes, C. and Muir, H., The influence of link protein stabilization on the viscometric properties of proteoglycan aggregate solutions. Biochim. Biophys. Acta 992, 201208 (1989).
11. Neame, P.J., Christner, J.E. and Baker, J.R., Cartilage proteoglycan aggregates. The link protein and proteoglycan amino-terminal globular domains have similar structures. J. BioL. Chem. 262, 1776817778 (1987).
12. Schinagl, R.M., Gurskis, D., Chen, A.C. and Sah, R.L., Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. Journal of Orthopaedic Research 15, 499506 (1997).
13. Bloebaum, R.D. and Wilson, A.S., The morphology of the surface of articular cartilage in adult rats. Journal of Anatomy 131, 333346 (1980).
14. Guilak, F., Ratcliffe, A., Lane, N., Rosenwassen, M. and Mow, V.C., Mechanical and biological changes in the superfacial zone of articular cartilage in canine experimental osteoarthritis. Journal of Orthopedic Research 12, 474484 (1994).
15. Oka, M., Ushio, K. and Fujita, H., Development of artificial articular cartilage. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 214, 5968 (2000).
16. Gu, Z.Q., Xiao, J.M. and Zhang, X.H.. The development of artificial articular cartilage – PVA-hydrogel. Bio-Medical Materials and Engineering 8, 7581 (1998).
17. Ushio, K., Oka, M. and Nakamura, T., Attachment of articular cartilage to underlying bone. J. Biomed. Mater. 68B, 5968 (2003).
18. Kobayashi, M., Toguchida, J. and Oka, M., Preliminary study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials 24, 639647 (2003).
19. Kobayashi, M., A study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus in vivo. Biomedical materials and engineering 14, 505515 (2004).
20. Hassan, C.M. and Peppas, N.A., Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv. Polym. Sci. 153, 3765 (2000).
21. Horkay, F., Basser, P.J., Hecht, A.M. and Geissler, E. E.: Hierarchical Organization of Cartilage Proteoglycans. Macromol. Symp. 306-307, 1117 (2011).
22. Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B. and Chadwick, R.S., Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophysical Journal 82, 27982810 (2002).
23. Horkay, F., Horkayne-Szakaly, I. and Basser, P.J., Measurement of the osmotic properties of thin polymer films and biological tissue samples. Biomacromolecules 6, 988993 (2005).
24. Basser, P.J., Schneiderman, R., Bank, R.A., Wachtel, E. and Maroudas, A., Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Archives of Biochemistry and Biophysics 351, 207219 (1998).
25. Horkay, F. and Lin, D.C., Mapping the local osmotic modulus of polymer gels. Langmuir 25, 87358741 (2009).
26. Silva, C., Horkayne-Szakaly, I., Chandran, P., Dimitriadis, E.K., Lin, D.C., Papanicolas, C., Basser, P.J. and Horkay, F., Depth dependence of the mechanical and osmotic properties of cartilage. In Gels and Biomedical Materials (Eds. Horkay, F., Narayan, R., et al. .) Cambridge University Press, 2012.


Cartilage: Biomimetic Study of the Extracellular Matrix

  • Chinedu I. Anyaeji (a1), Peter J. Basser (a1) and Ferenc Horkay (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed