Skip to main content Accessibility help
×
Home

Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices

  • T. Koga (a1), X. Sun (a2), S. B. Cronin (a2) and M. S. Dresselhaus (a2) (a3)

Abstract

A large enhancement in the thermoelectric figure of merit for the whole superlattice, Z 3D T, is predicted for short period GaAs/AlAs superlattices relative to bulk GaAs. Various superlattice parameters (superlattice growth direction, superlattice period and layer thicknesses) are explored to optimize Z 3D T, including quantum wells formed at various high symmetry points in the Brillouin zone. The highest room temperature Z 3D T obtained in the present calculation is 0.41 at the optimum carrier concentration for either (001) or (111) oriented GaAs(20 Å)/AIAs(20 Å) superlattices, which is about 50 times greater than the corresponding ZT for bulk GaAs obtained using the same basic model.

Copyright

References

Hide All
[1] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993); L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993);
[2] Hicks, L. D., Harman, T. C., Sun, X., and Dresselhaus, M. S., Phys. Rev. B 53, R10493 (1996); T. C. Harman, D. L. Spears, and M. J. Manfra, J. Electron. Mater. 25, 1121 (1996); T. C. Harman, D. L. Spears, D. R. Calawa, S. H. Groves, and M. P. Walsh, Proceedings for 16th International Conference on Thermoelectrics page 416 (1997).
[3] Hicks, Lyndon D.. The effect of quantum-well superlattices on the thermo-electric figure of merit. PhD thesis, Massachusetts Institute of Technology, June 1996. Department of Physics.
[4] Koga, T., Sun, X., Cronin, S. B. and Dresselhaus, M. S., Appl. Phys. Lett. 73, 2950 (1998), and references therein.
[5] Sofo, J. O. andMahan, G. D., Appl. Phys. Lett. 65, 2690 (1994).
[6] Broido, D. A. and Reinecke, T. L., Appl. Phys. Lett. 67, 100 (1995); D. A. Broido and T. L. Reinecke, Appl. Phys. Lett. 67, 1170 (1995); P.J. Lin-Chung and T. L. Reinecke, Phys. Rev. B 51, 13244 (1995); D. L. Broido and T. L. Reinecke, Phys. Rev. B 51, 13797 (1995); D. A. Broido and T. L. Reinecke, Appl. Phys. Lett. 70, 2834 (1997);
[7] Rowe, D. M. and Min, G., Proceedings for 13th International Conference on Thermoelectrics page 339 (1994); Nishio, Y. and Hirano, T., Jpn. J. Appl. Phys., Part 1 36, 170 (1997).
[8] Venkatasubramanian, R., Colpitts, T., Watko, E., Lamvik, M., and El-Masry, N., Journal of Crystal Growth 170, 817 (1997).
[9] Harman, T. C., Spears, D. L., and Walsh, M. P., Abstract for the 40th Electronic Materials Conf., Charlottesville, J. Electron. Mater. Lett. 27, No. 7, 44 (1998); T. C. Harman, D. L. Spears, and M. P. Walsh, J. Electron. Mater. Lett. 28, Li (1999).
[10] Davies, J. H., The Physics of Low-Dimensional Semiconductors (Cambridge University Press, New York, 1998).p.91.
[11] Kittel, C., Introduction to Solid State Physics 7th edition (John Wiley & Sons, Inc., New York, 1996). p. 180.
[12] Adachi, S., J. Appi. Phys. 58, R1 (1985).
[13] Landolt-Bornstein, . Numerical Data and Functional Relationships in Science and Technology. New Series. Vol.22a (Springer-Verlag, Berlin, 1987).
[14] Ashcroft, N. W. and Mermin, N. D., Solid State Physics (W. B Saunders Company, Philadelphia, 1976). chapters 12, 13.
[15] Chen, Gang, Trans. ASME, J. Heat Trans. 119, 220 (1997).

Carrier Pocket Engineering to Design Superior Thermoelectric Materials Using GaAs/AlAs Superlattices

  • T. Koga (a1), X. Sun (a2), S. B. Cronin (a2) and M. S. Dresselhaus (a2) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed