Skip to main content Accessibility help
×
Home

Carbon Nanospheres: “Green” Synthesis, Characterization, and Growth Kinetics

  • Mathilda Doorley (a1), Sanjay R Mishra (a2), Mohamad Laradji (a3), Ram K Gupta (a4) and Kartik Ghosh (a5)...

Abstract

An attempt is made to understand the growth kinetics of carbon nanospheres (CNS) synthesized using a “green” technique. An aqueous solution of glucose, the precursor, was hydrothermally treated to produce porous CNS with homogeneous size distribution and smooth surfaces. The growth of CNS was studied by evaluating transmission electron microscope images as a function of hydrothermal reaction time and temperatures. Raman spectra revealed the presence of short-ordered graphitic nanostructures in an amorphous carbon matrix. FTIR spectroscopy confirms the carbonization of glucose and shows the presence of surface hydroxyl groups on CNSs. Based on various experimental observations it is proposed that the growth of CNSs is dictated by a reaction-controlled mechanism where long chain glucose-based oligomers bond to the CNS surface. The narrow size distribution and highly hydrophilic surface of these amorphous CNS makes them potential candidates for biomedical applications.

Copyright

References

Hide All
1. Isao, M., Chan-Hun, K., and Yozo, K., Carbon, 39, 399 (2001).
2. Endo, M., Kim, C., Nishimura, K., Fujimo, T., and Miyashita, J., Carbon, 38, 183 (2000).
3. Dahn, J. R., Zheng, T., Liu, Y. H., and Xue, J. S., Science, 270, 590 (1995).
4.M. B. Shiflett and Foley, H. C., Science, 285, 1902 (1999).
5. Xia, Y. N., Ggates, B., Yin, Y. D., and Lu, Y., Adv. Mater. 12, 693 (2000).
6. Levesque, A., Binh, V. Thien, Semet, V., Guillot, D., Fillit, R., Brookes, M., Nguyen, T., Thin Solid Films 464–465, 308 (2004).
7. Wal, Randy L. Vander and Tomasek, Aaron J., NASA/TM-2003-212214.
8. Caruso, F., Caruso, R. A., and Mohwald, R. A., Science, 282, 111 (1998).
9. Feather, M. S. and Harris, J. F., Adv. Carbohydr. Chem. Biochem. 28, 1111 (1998).
10. Sun, X. and Li, Y.. Angew. Chem. Int. Ed. Engl. 43, 597 (2004).
11. Yao, C., Shin, Y., Wang, Li-Qiong, Windisch, C. F. Jr, Samuels, W. D., Arey, B. W., Wang, C., Risen, W. M. Jr, and Exarhos, G. J., (not publiahsed).
12. Sakaki, T., Shibata, M., Miki, T., Hirosue, H., Hayashi, N., Bioresour. Technol. 58, 197 (1996).
13. Luijkx, G. C. A., Rantwijk, F. van, Bekkum, H. van, Antal, M. J. Jr., Carbohydrate Res. 272, 191 (1995).
14. Maciel, J. S., Silva, D.A., Haroldo, , Paula, C.B., Paula, R.C.M. de, Eur. Poly. J. 41, 2726 (2005).
15. Hashaikeh, R., Butler, I.S., and Kozinski, J.A., Energy & Fuels, 20, 2743 (2006).
16. Cho, N. H., Veirs, D. K., Ager, J. W. III, Rubin, M. D., and Hopper, C. B., and Bogy, D. B., J. Appl. Phys. 71, 2243 (1992).
17. Ferrari, A. C., Rodil, S. E., and Robertson, J., Phy. Rev. B67, 155306 (2003).
18. Ferrari, A. C., Mat. Res. Soc. Symp. Proc. 675, W11.5.1 (2001).
19. Ferrari, A. C. and Robertson, J., Phys. Rev. B, 61, 14095 (2000).
20. Robertson, J. P. and O'Reilly, E. P., Phys. Rev. B 35, 2946 (1987).
21. Cançado, L. G., Takai, K., Enoki, T.,Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Magalhães-Paniago, R., and Pimenta, M. A., Appl. Phys. Lett. 88, 163106 (2006).
22. Luijkx, G. C. A., Rantwijk, F. van, Bekkum, H. van, Antal, M. J. Jr., Carbohydrate Res. 272, 191 (1995).
23. Kabyemela, B. M., Adschiri, T., Malaluan, R.M., Arai, K., Ind. Eng. Chem Res. 38 288 (1999).
24. Titirici, M., Antonietti, M., and Thomas, A., Chem. Mater. 18, 3808 (2006).
25. Wang, Q., Li, H., Chen, L., and Huang, X., Carbon, 39, 2211 (2001).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed