Published online by Cambridge University Press: 25 February 2011
We present results of a study on the effect of unprecracked arsine(AsH3) and trimethylgallium(TMGa) on carbon incorporation in UHVCVD(Ultra High Vacuum Chemical Vapor Deposition) grown GaAs epilayers on GaAs(100). Three distinct temperature-dependent regions of growth rates were identified as growth temperature was increased from 570 to 690°C. The growth rates were also strongly dependent on V/III ratio in a range of 5 to 30, which clearly indicates that the growth rate is determined by the amount of arsenic adsorbed on the surface at low V/III ratio and adsorption of TMGa or decomposition process at high V/III ratio. Hall concentration measurements and low temperature photoluminescence data show that the films are all p-type and their impurity concentrations are reduced by two orders of magnitude compared to those of epilayers grown by CBE(Chemical Beam Epitaxy) which employs TMGa and arsenic(precracked arsines) as source materials. Our results indicate that the hydrogen atoms dissociated from adsorbed arsine may remove hydrocarbon species resulting in a significant drop in hole concentration.