Skip to main content Accessibility help
×
Home

Cantilever Epitaxy of GaN on Sapphire: Further Reductions in Dislocation Density

  • D. M. Follstaedt (a1), P. P. Provencio (a1), D. D. Koleske (a1), C. C. Mitchell (a1), A. A. Allerman (a1), N. A. Missert (a1) and C. I. H. Ashby (a1)...

Abstract

The density of vertical threading dislocations at the surface of GaN grown on sapphire by cantilever epitaxy has been reduced with two new approaches. First, narrow mesas (<1 μm wide) were used and {11–22} facets formed over them early in growth to redirect dislocations from vertical to horizontal. Cross-sectional transmission electron microscopy was used to demonstrate this redirection and to identify optimum growth and processing conditions. Second, a GaN nuc-leation layer with delayed 3D → 2D growth transition and inherently lower threading dislocation density was adapted to cantilever epitaxy. Several techniques show that a dislocation density of only 2–3×107/cm2 was achieved by combining these two approaches. We also suggest other developments of cantilever epitaxy for reducing dislocations in heteroepitaxial systems.

Copyright

References

Hide All
1. Speck, J. S. and Rosner, S. J., Physica B 273–274, 24 (1999).
2. Zheleva, T. S., Nam, O.-H., Bremser, M. D. and Davis, R. F., Appl. Phys. Lett. 71, 2472 (1997).
3. Kapolnek, D., Keller, S., Vetury, R., Underwood, R. D., Kozodoy, P., DenBaars, S. P. and Mishra, U. K., Appl. Phys. Lett. 71, 1024 (1997).
4. Hiramatsu, K., Nishiyama, K., Onishi, M., Mizutani, H., Narukawa, M., Motogaito, A., Miyake, H., Iyechika, Y. and Maeda, T., J. Cryst. Gro. 221, 316 (2000).
5. Linthicum, K., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Batchelor, D. and Davis, R., Appl. Phys. Lett. 75, 196 (1999).
6. Ashby, C. I. H., Mitchell, C. C., Han, J., Missert, N. A., Provencio, P. P., Follstaedt, D. M., Peake, G. M. and Griego, L., Appl. Phys. Lett. 77, 3233 (2000).
7. Follstaedt, D. M., Provencio, P. P., Missert, N. A., Mitchell, C. C., Koleske, D. D., Allerman, A. A. and Ashby, C. I. H., Appl. Phys. Lett. 81, 2758 (2002).
8. Katona, T. M., Craven, M. D., Fini, P. T., Speck, J. S. and DenBaars, S. P., Appl. Phys. Lett. 79, 2907 (2001).
9. Strittmatter, A., Rodt, S., Reiβmann, L., Bimberg, D., Schröder, H., Obermeier, E., Riemann, T., Christen, J. and Krost, A., Appl. Phys. Lett. 76, 727 (2001).
10. Detchprohm, T., Yano, M., Sano, S., Nakamura, R., Mochiduki, S., Nakamura, T., Amano, H. and Akasaki, I., Jpn. J. Appl. Phys. 40, L16 (2001).
11. Sakai, A., Sunakawa, H. and Usui, A., Appl. Phys. Lett. 71, 2259 (1997); Appl. Phys. Lett. 76, 442 (2000).
12. Koleske, D. D., Fischer, A. J., Allerman, A. A., Mitchell, C. C., Cross, K. C., Kurtz, S. R., Figiel, J. J., Fullmer, K. W., and Breiland, W. G., Appl. Phys. Lett. 81, 1940 (2002).
13. Provencio, P. P., Follstaedt, D. M., Missert, N. A., Koleske, D. D., Mitchell, C. C., Allerman, A. A. and Ashby, C. I. H., paper L3.15, these proceedings.
14. Coultrin, M. E., Willan, C. C., Bartram, M. E., Han, J., Missert, N., Crawford, M. H. and Baca, A. G., MRS Internet J. Nitride Semicond. Res. 4S1, G6.9 (1999).
15. Rosner, S. J., Carr, E. C., Lodowise, M. J., Girolami, G. and Erikson, H. I., J. Appl. Phys. 70, 420 (1997).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed