Skip to main content Accessibility help

Can Grain Boundaries Improve the Performance of Cu(In,Ga)Se2 Solar Cells?

  • Uwe Rau (a1) and Uwe Rau (a2)


Two-dimensional numerical device simulations investigate the influence of grain boundaries on the performance of Cu(In,Ga)Se2 solar cells focussing on the question whether or not grain boundaries can improve the efficiency of those devices. The results unveil the following statements: (i) The mere introduction of a grain boundary by adding localized defects into a device that has a high performance from the beginning is not beneficial. (ii) Polycrystalline solar cells can outperform monocrystalline ones, if the total number of defects is equal in both devices. I.e. a given number of recombination centers is better dealt with if these defects are concentrated at the grain boundary rather than homogeneously distributed in the bulk. (iii) A significant improvement of carrier collection via the grain boundaries is found if the bulk of the devices is assumed as relatively poor. In this situation, addition of defects that are not much recombination ac-tive but provide a large charge density at the grain boundaries can improve the device performance. (iv) Passivation of grain boundaries by an internal band offset in the valence band is effective only if the internal barrier amounts at least to 300 meV.



Hide All
1. Ramanathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., and Duda, A., Progr. Photovolt.: Res. Appl. 11, 225 (2003).
2. Visoly-Fisher, I., Cohen, S. R., Ruzin, A., and Cahen, D., Adv. Mater. 16, 8793 (2004).
3. Visoly-Fisher, I., Cohen, S.R., Ruzin, A., and Cahen, D., Adv. Funct. Mater. 16, 649 (2006).
4. Schuler, S., Nishiwaki, S., Beckmann, J., Rega, N., Brehme, S., Siebentritt, S., and Lux-Steiner, M. Ch., Proc. 29th IEEE Photov. Spec. Conf.(IEEE, Piscataway, 2002), p. 504.
5. Siebentritt, S. and Schuler, S., J. Phys. Chem. Solids 64, 1621 (2003).
6. Sadewasser, S., Glatzel, Th., Schuler, S., Nishiwaki, S., Kaigawa, R., and Lux-Steiner, M. Ch., Thin Solid Films 431-432, 257 (2003).
7. Meyer, T., Engelhardt, F., Parisi, J., and Rau, U., J. Appl. Phys. 91, 5093 (2002).
8. Romero, M. J., Ramanathan, K., Contreras, M. A., Al-Jassim, M. M., Noufi, R., and Sheldon, P., Appl. Phys. Lett. 83, 4770 (2003).
9. Ott, N., Hanna, G., Rau, U., Werner, J. H., and Strunk, H. P., J. Phys.: Condens. Matter 16, S85 (2004).
10. Hanna, G., Glatzel, T., Sadewasser, S., Ott, N., Strunk, H. P., Rau, U., and Werner, J. H., Appl. Phys. A 81, 1 (2006).
11. Persson, C. and Zunger, A., Phys. Rev. Lett. 91, 266401 (2003).
12. Persson, C. and Zunger, A., Appl. Phys. Lett. 87, 211904 (2005).
13. Hetzer, M. J. Strzhemechny, Y. M., Gao, M., Contreras, M. A., Zunger, A., and Brillson, L. J., Appl. Phys. Lett. 86, 162105 (2005).
14. Azulay, D., Millo, O., Balberg, I., Schock, H.-W., Visoly-Fisher, I., and Cahen, D., Sol. En. Mat. and Sol. Cells 91, 85 (2007).
15. Siebentritt, S., Sadewasser, S., Wimmer, M., Leendertz, C., Eisenbarth, T., and Lux-Steiner, M. Ch., Phys. Rev. Lett. 97, 146601 (2006).
16. Taretto, K., Rau, U. and Werner, J. H., Thin Solid Films 480-481, 8 (2005).
17. Gloeckler, M., Sites, J. R. and Metzger, W. K., J. Appl. Phys. 98, 113704 (2005).
18. Orgassa, K., PhD. thesis, Universität Stuttgart, Germany, 2004.


Can Grain Boundaries Improve the Performance of Cu(In,Ga)Se2 Solar Cells?

  • Uwe Rau (a1) and Uwe Rau (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed