Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T01:31:01.781Z Has data issue: false hasContentIssue false

Can Grain Boundaries Improve the Performance of Cu(In,Ga)Se2 Solar Cells?

Published online by Cambridge University Press:  01 February 2011

Uwe Rau
Affiliation:
u.rau@fz-juelich.de, Forschungszentrum Juelich, IEF-5, Photovoltaics, Photovoltaik, Jülich, 52425, Germany
Uwe Rau
Affiliation:
u.rau@fz-juelich.de, Forschungszentrum Jülich, IEF-5, Photovoltaics, Jülich, 52425, Germany
Get access

Abstract

Two-dimensional numerical device simulations investigate the influence of grain boundaries on the performance of Cu(In,Ga)Se2 solar cells focussing on the question whether or not grain boundaries can improve the efficiency of those devices. The results unveil the following statements: (i) The mere introduction of a grain boundary by adding localized defects into a device that has a high performance from the beginning is not beneficial. (ii) Polycrystalline solar cells can outperform monocrystalline ones, if the total number of defects is equal in both devices. I.e. a given number of recombination centers is better dealt with if these defects are concentrated at the grain boundary rather than homogeneously distributed in the bulk. (iii) A significant improvement of carrier collection via the grain boundaries is found if the bulk of the devices is assumed as relatively poor. In this situation, addition of defects that are not much recombination ac-tive but provide a large charge density at the grain boundaries can improve the device performance. (iv) Passivation of grain boundaries by an internal band offset in the valence band is effective only if the internal barrier amounts at least to 300 meV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ramanathan, K., Contreras, M. A., Perkins, C. L., Asher, S., Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., and Duda, A., Progr. Photovolt.: Res. Appl. 11, 225 (2003).Google Scholar
2. Visoly-Fisher, I., Cohen, S. R., Ruzin, A., and Cahen, D., Adv. Mater. 16, 8793 (2004).Google Scholar
3. Visoly-Fisher, I., Cohen, S.R., Ruzin, A., and Cahen, D., Adv. Funct. Mater. 16, 649 (2006).Google Scholar
4. Schuler, S., Nishiwaki, S., Beckmann, J., Rega, N., Brehme, S., Siebentritt, S., and Lux-Steiner, M. Ch., Proc. 29th IEEE Photov. Spec. Conf.(IEEE, Piscataway, 2002), p. 504.Google Scholar
5. Siebentritt, S. and Schuler, S., J. Phys. Chem. Solids 64, 1621 (2003).Google Scholar
6. Sadewasser, S., Glatzel, Th., Schuler, S., Nishiwaki, S., Kaigawa, R., and Lux-Steiner, M. Ch., Thin Solid Films 431-432, 257 (2003).Google Scholar
7. Meyer, T., Engelhardt, F., Parisi, J., and Rau, U., J. Appl. Phys. 91, 5093 (2002).Google Scholar
8. Romero, M. J., Ramanathan, K., Contreras, M. A., Al-Jassim, M. M., Noufi, R., and Sheldon, P., Appl. Phys. Lett. 83, 4770 (2003).Google Scholar
9. Ott, N., Hanna, G., Rau, U., Werner, J. H., and Strunk, H. P., J. Phys.: Condens. Matter 16, S85 (2004).Google Scholar
10. Hanna, G., Glatzel, T., Sadewasser, S., Ott, N., Strunk, H. P., Rau, U., and Werner, J. H., Appl. Phys. A 81, 1 (2006).Google Scholar
11. Persson, C. and Zunger, A., Phys. Rev. Lett. 91, 266401 (2003).Google Scholar
12. Persson, C. and Zunger, A., Appl. Phys. Lett. 87, 211904 (2005).Google Scholar
13. Hetzer, M. J. Strzhemechny, Y. M., Gao, M., Contreras, M. A., Zunger, A., and Brillson, L. J., Appl. Phys. Lett. 86, 162105 (2005).Google Scholar
14. Azulay, D., Millo, O., Balberg, I., Schock, H.-W., Visoly-Fisher, I., and Cahen, D., Sol. En. Mat. and Sol. Cells 91, 85 (2007).Google Scholar
15. Siebentritt, S., Sadewasser, S., Wimmer, M., Leendertz, C., Eisenbarth, T., and Lux-Steiner, M. Ch., Phys. Rev. Lett. 97, 146601 (2006).Google Scholar
16. Taretto, K., Rau, U. and Werner, J. H., Thin Solid Films 480-481, 8 (2005).Google Scholar
17. Gloeckler, M., Sites, J. R. and Metzger, W. K., J. Appl. Phys. 98, 113704 (2005).Google Scholar
18. Orgassa, K., PhD. thesis, Universität Stuttgart, Germany, 2004.Google Scholar