Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T20:25:44.073Z Has data issue: false hasContentIssue false

Calculated Transport and Magnetic Properties of some Perovskite Metallic Oxides AMO3

Published online by Cambridge University Press:  10 February 2011

G. Santi
Affiliation:
Département de Physique de la Matière Condensée, Université de Genève, 24, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
T. Jarlborg
Affiliation:
Département de Physique de la Matière Condensée, Université de Genève, 24, Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland
Get access

Abstract

We study some compounds of the perovskite (or pseudo-cubic perovskite) series AMO3, where M is a transition metal and A is Ca, Sr, or Nd, by LSDA self-consistent electronic structure calculations with the LMTO method. Transport and magnetic properties, as well as Fermi surfaces are calculated. These materials exhibit sharp density of states features in the vicinity of the Fermi level that strongly affect their transport and magnetic properties and make them very sensitive to structural deformation and stoichiometry. Calculated total energies are very close for anti-ferromagnetic and ferromagnetic solutions. This explains qualitatively the magnetoresistive anomalies shown by this family of compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kuwahara, H. et al, Science 270, 961 (1995).Google Scholar
2. Kuwahara, H. et al, Science 272, 80 (1996).Google Scholar
3. Allen, P. B. et al, Phys. Rev. B 53, 4393 (1996).Google Scholar
4. Santi, G. and Jarlborg, T., J. Phys.:Condens. Matter 9, 9563 (1997).Google Scholar
5. Singh, D. J., Appl. Phys. Lett. 79, 4818 (1996).Google Scholar
6. Mazin, I. I. and Singh, D. J., Phys. Rev. B 56, (1997).Google Scholar
7. Pickett, W. E. and Singh, D. J., Phys. Rev. B 55, 1146 (1996).Google Scholar
8. Salpathy, S., Popović, Z. S., and Vukajlović, F. R., J. Appl. Phys. 79, 4555 (1996).Google Scholar
9. Kuwahara, H. et al, Phys. Rev. B 56, 9386 (1997).Google Scholar
10. Kawano, H. et al, Phys. Rev. Lett. 78, 4253 (1997).Google Scholar
11. Reymond, S., 1997, private communication.Google Scholar
12. Wollan, E. O. and Koehler, W. C., Phys. Rev. 100, 545 (1955).Google Scholar
13. Liu, J. Z. et al, Appl. Phys. Lett. 66, 3218 (1995).Google Scholar
14. Schiffer, P., Ramirez, A. P., Bao, W., and Cheong, S.-W., Phys. Rev. Lett. 75, (1995).Google Scholar
15. Radaelli, P. G. et al, Phys. Rev. Lett. 75, 4488 (1995).Google Scholar
16. Moritomo, Y., Kuwahara, H., Tomioka, Y., and Tokura, Y., Phys. Rev. B 55, 7549 (1997).Google Scholar