Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T07:05:14.980Z Has data issue: false hasContentIssue false

Calcium Oxalate Monohydrate Precipitation at Phospholipid Monolayer Phase Boundaries

Published online by Cambridge University Press:  17 March 2011

Isa O. Benítez
Affiliation:
Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
Daniel R. Talham
Affiliation:
Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200
Get access

Abstract

The precipitation of calcium oxalate monohydrate (COM) was observed at biphasic phospholipid Langmuir monolayers with the aid of Brewster angle microscopy. COM appears preferentially at phase boundaries of a monolayer of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a state of liquid expanded/liquid condensed coexistance. However, when the phase boundary is created by two different phospholipids that are phase segregated, such as DPPC and 1,2-dimiristoyl-sn-glycero-3-phosphocholine (DMPC), crystal formation occurs away from the interface. It is suggested that COM growth at phase boundaries is preferred only when there is molecular exchange between the phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prien, E. L. and Prien, E. L., Am. J. Med. 45, 654 (1968).Google Scholar
2. Smesko, A., Singh, R. P., Lanzalaco, A. C., and Nancollas, G. H., Colloids and Surfaces 30, 361 (1988).Google Scholar
3. Khan, S. R. and Hackett, R. L., J. Urol. 150, 239 (1993).Google Scholar
4. Boyce, W. H. and Garvey, F. K., J. Urol. 76, 213 (1956).Google Scholar
5. Whipps, S., Khan, S. R., O'Palko, F. J., Backov, R., and Talham, D. R., J. Cryst. Growth. 192, 243 (1998).CrossRefGoogle Scholar
6. Backov, R., Khan, S. R., Mingotaud, C., Byer, K., Lee, C. M., and Talham, D. R., J. Am. Soc. Neph. 10, S359 (1999).Google Scholar
7. Backov, R., Lee, C. M., Khan, S. R., Mingotaud, C., Fanucci, G. E., and Talham, D. R., Langmuir 16, 6013 (2000).Google Scholar
8. Khan, S. R., Glenton, P. A., Backov, R., and Talham, D. R., Kidney International 62, 2062 (2002).Google Scholar
9. Loste, E., Diaz-Marti, E., Zarbakhsh, A., and Meldrum, F. C., Langmuir 19, 2830 (2003).Google Scholar
10. Benitez, I. O., Backov, R., Khan, S. R., and Talham, D. R., Mat. Res. Soc. Symp. Proc. 774, 209 (2003).Google Scholar
11. Schief, W. R., Dennis, S. R., Frey, W., and Vogel, V., Colloids and Surfaces A: Physicochem. Eng. Aspects 171, 75 (2000).Google Scholar
12. Although a pressure of 5 mN/m yields a pure LE phase at 25 °C, the lower temperature causes a phase transition to occur at a lower pressure, yielding a LE/LC coexistance.Google Scholar
13. Benitez, I. O. and Talham, D. R., Langmuir, submitted (2004).Google Scholar
14. Koppenol, S., Yu, H., and Zografi, G., J. Colloid Interface Sci. 189, 158 (1997).Google Scholar
15. Moraille, P. and Badia, A., Langmuir 18, 4414 (2002).Google Scholar
16. Discher, B. M., Schief, W. R., Vogel, V., and Hall, S. B., Biophys. J. 77, 2051 (1999).Google Scholar
17. Park, C. K., Schmitt, F. J., Evert, L., Schwartz, D. K., Israelachvili, J. N., and Knobler, C. M., Langmuir 15, 202 (1999).Google Scholar
18. Gopal, A. and Lee, K. Y. C., J. Phys. Chem. 105, 10348 (2001).Google Scholar
19. Dufrene, Y. F., Barger, W. R., Green, J.-B. D., and Lee, G. U., Langmuir 13, 4779 (1997).Google Scholar
20. Reviakine, I., Simon, A., and Brisson, A., Langmuir 16, 1473 (2000).Google Scholar
21. Sanchez, J. and Badia, A., Thin Solid Films 440, 223 (2003).Google Scholar
22. Nassoy, P., Birch, W. R., Andelman, D., and Rondelez, F., Phys. Rev. Lett. 76, 455 (1996).Google Scholar