Skip to main content Accessibility help
×
Home

Cadmium(II) and Lead(II) removal by Chlorella sp. Immobilized and E. coli genetically engineered with mice Metallothionein I

  • V. Almaguer-Cantú (a1), L. Morales-Ramos (a1), K. Arevalo-Niño (a1), M.T. Garza-González (a2) and I. Balderas-Rentería (a2)...

Abstract

The pollution caused by heavy metals is one of the major environmental problems that is imperative to be solved. New technologies, easy to implement and to adapt to any system, deserve special attention and are a focus of this work the ability of Chlorella sp. and E. coli genetically engineered with mice metallothionein I, both immobilized in alginate of calcium to remove Cd(II) and Pb(II) from aqueous solutions was investigated in batch assays for the treatment of diluted aqueous solutions. The kinetics, sorption capacities and sorption percentage were determined. The influence of metal concentration in solution is discussed in the terms of Langmuir isotherm and constants. Sorption capacities increased with increasing metal concentration in solution. For solution containing 300 mg/L of metal, the observed uptake capacities were 94.941±1.094 mgCd/g Chlorella. , 24.076±2.292 mgCd/g E.coli and 239.17±2.478 mgPb/g Chlorella , 37.952±4.245 mgPb/g E.coli . The Langmuir constants to Chlorella sp. were qmax=285.72(mgPb/g), b=0.0276(l/mgPb), qmax=103.65(mgCd/g) and b=0.0005(l/mgCd) while to E. coli were qmax=28.141(mgPb/g), b=0.113(l/mgPb), qmax=24.272(mgCd/g) and b =0.019(1/mgCd). The biomass of the algae showed to have better capacity of metallic sorption that the biomass of the bacteria genetically engineering. The study proved that microorganisms biomass is a suitable material for the removal of the studied heavy metals ions from aqueous solutions, achieving removal efficiencies higher than 90%, and could be considered as a potential material for treating effluent polluted with Cd(II) and Pb(II) ions.

Copyright

References

Hide All
1. Godlewska-Zylkiewicz, B. Anal Bioanal Chem 384:114. (2006)
2. Suleiman, JS, Hu, B, Huang, C, Zhang, N. J. Hazard Mater 157:410. (2008)
3. , Ozdemirs, Gul-Gueven, R, Killic, E, Dogru, M, Erdogan, S. Microchim Acta 169:7985. (2010)
4. Zoubolis, AI, Loukidou, MX, Matis, KA. Process Biochem 39:909. (2004)
5. Davis, TA, Volesky, B, Mucci, A. Water Res 37: 4311 (2003)
6. Bag, H, Lale, M, Turker, AR. Talanta 47: 689 (1998)
7. Quintelas, C, Rocha, Z, Silva, B, Fonseca, B, Figueiredo, H, Tavares, T. Chemical Engineering Journal. 152, 110115. (2009).
8. Yang, J.K., Volesky, B. Environ Sci Technol 33, 751757. (1998)
9. Hashim, M.A. and Chu, K.H.. Chem. Eng. J., 97(2–3), 49255. (2004)
10. Gupta, V.K., Rastogi, A., Saini, V.K., and Jain, N.. J. Colloid Interf. Sci., 296(1), 5963. (2006)
11. Ho, Y.S. and McKay, G.. Process Biochem., 34, 451465. (1999)
12. Ho, Y. S. and McKay, G.. Chem. Eng. J., 70, 115124. (1998)
13. Ho, Y.S. and McKay, G.. Wat. Res., 3, 735742. (2000)
14. Ho, Y.S. Sci. China Ser. B: Chem., 48, 176. (2005)
15. Zhou, J.L., Kiff, R.J. J Chem Technol Biot 52, 317–30. (1991)
16. Lei, Z., Yu, T., Ai-zhong, D. and Jin-sheng, W. Water Sci & Technol. 58(1), 195200. (2008)

Cadmium(II) and Lead(II) removal by Chlorella sp. Immobilized and E. coli genetically engineered with mice Metallothionein I

  • V. Almaguer-Cantú (a1), L. Morales-Ramos (a1), K. Arevalo-Niño (a1), M.T. Garza-González (a2) and I. Balderas-Rentería (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed