Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-16T20:35:29.752Z Has data issue: false hasContentIssue false

Ca Dopant Site Within Ion Implanted GaN Lattice

Published online by Cambridge University Press:  10 February 2011

H. Kobayashi
Affiliation:
Department of Physics, the University at Albany, SUNY, Albany, NY 12222, USA
W. M. Gibson
Affiliation:
Department of Physics, the University at Albany, SUNY, Albany, NY 12222, USA
Get access

Abstract

We have investigated the Ca dopant site within the GaN lattice using ion channeling in combination with Rutherford backscattering spectrometry (RBS), particle induced x ray emission (PIXE) and nuclear reaction analysis (NRA). Metalorganic chemical vapor deposition (MOCVD) grown GaN on c-plane sapphire substrates implanted with 40Ca at a dose of 1×1015 cm−2 with post-implant annealing were investigated. The channeling results indicate that more than 80% of Ca are near Ga sites even in as-implanted samples, however, they are displaced by ∼ 0.2 Å from the Ga sites and that the Ca goes to the exact Ga sites after annealing at 1100°C. We think that the displaced Ca in the as-implanted samples are electrically compensated due to formation of complex defects with donor like point defects, such as CaGa-VN and/or CaGa-GaN, and that CaGa becomes electrically active when these complex defects are broken and the point defects diffuse away with annealing at 1100°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Zolper, J. C. and Shul, R. J., MRS Bull. 22, 36(1997)10.1557/S0883769400032553Google Scholar
[2] Shur, M. S. and Khan, M. A. MRS Bull. 22, 44(1997)10.1557/S0883769400032565Google Scholar
[3] Zolper, J. C., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68 1945(1996)10.1063/1.115634Google Scholar
[4] Pearton, S. J., Vartuli, C. B., Zolper, J. C., Yuan, C., and Stall, R. A., Appl. Phys. Lett. 67, 1435(1995)10.1063/1.114518Google Scholar
[5] Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 69 2364(1996)10.1063/1.117526Google Scholar
[6] Tan, H. H., Williams, J. S., Zou, J., Cockayne, D. J. H., Pearton, S. J., Zolper, J. C., and Stall, R. A., Appl. Phys. Lett. 72, 1190(1998)10.1063/1.121030Google Scholar
[7] Kobayashi, H. and Gibson, W. M., Appl. Phys. Lett. 73, 1406(1998)10.1063/1.121958Google Scholar
[8] Ziegler, J. F., Biersack, J. P. and Littmark, U., Stopping and Ranges of Ions in Matter (Pergamon, New York, 1988), Vol. IGoogle Scholar
[9] Cao, X. A., Abernathy, C. R., Singh, R. K., Pearton, S. J., Fu, M., Sarvepalli, V., Sekhar, J. A., Zolper, J. C., Rieger, D. J., Han, J., Drummond, T. J., Shul, R. J., and Wilson, R. G., Appl. Phys. Lett. 73, 229 (1998)10.1063/1.121764Google Scholar
[10] Bashkin, S., Carlson, R. R., and Douglas, R. A., Phys. Rev. 114, 1552(1959)10.1103/PhysRev.114.1552Google Scholar
[11] Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982)Google Scholar
[12] Liu, C., Mensching, B., Volz, K., and Rauschenbach, B., Appl. Phys. Lett. 71 2313(1997)10.1063/1.120059Google Scholar
[13] Tesmer, J. R. and Nastasi, M., Handbook of Modern Ion Beam Materials Analysis (Materials Research Society, Pittsburgh, 1995)Google Scholar