Skip to main content Accessibility help
×
Home

C60 Transformations at High Pressures

  • C. S. Yoo (a1), W. J. Nellis (a1), M. L. Sattler (a1), R. G. Musket (a1), N. Hinsey (a1) and W. Brocious (a1)...

Abstract

C60 molecules have been studied at both shock and static high pressures. Under shock compressions C60 fullerenes are stable into the 13-17 GPa pressure range. The onset of a fast (∼0.5 μs) reconstructive transformation to graphite occurs near 17 GPa. The graphite recovered from 27 GPa and about 900 K is relatively well ordered with La = 100 Å. Above 50 GPa a continuous transformationto an amorphous state is observed in recovered specimens. A transparent, metastable carbon phase was recovered from thin films of C60, shocked to 69 GPa and 2200 K and then rapidly quenched to 1000 K. The selected area diffraction patterns indicate thatthe metastable carbon contains an amorphous diamond and n-diamond. Under hydrostatic compressions C60 molecules transform reversibly to a semi-transparent phase in the pressure range of 15-25 GPa with a large pressure hysteresis. The high pressure phaseconsists of interconnected strongly interacting C60 agglomerates, or networksof fullerenes, whose stability continuously increases with increase of pressure. Above 27 GPa the transition becomes irreversible, and the material recovered from high pressureis metastable and diamond-like at ambient conditions. These pressure-induced transitions are explained in terms of nr-electron rehybridization between C60 molecules, which occurs at substantially decreased intermolecular distances.

Copyright

References

Hide All
1. Kroto, H., Science 242, 1139 (1988); W.R. Kratschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffmann, Nature 347, 354 (1990).
2. Erskine, D.J. and Nellis, W.J., Nature 349, 317 (1991); F.P. Bundy, J. Chem. Phys. 46, 3437 (1967).
3. Hirai, H. and Kondo, K.I., Science 253, 772 (1991).
4. Utsumi, W. and Yagi, T., Science 252, 1542 (1991).
5. Duclos, S.J., Brister, K., Haddon, R.C., Kortan, F.A., and Thiel, F.A., Nature 351, 380 (1991); R.S. Ruoff and A.L. Ruoff, Appl. Phys. Lett. 52, 1553 (1991).
6. Gust, W.H., Phys. Rev. B22, 4744 (1980).
7. Mitchell, A.C. and Nellis, W.J., J. Appl. Phys. 52, 3363 (1981)
8. Thiel, M. van. and Ree, F.H., Int. J. of Thermophysics. 10, 227 (1989).
9. Jephcoat, A.P., Mao, H.K. and Bell, P.M., Hydrothermal Experimental Techniques, edited by Ulmer, G.C. and Barnes, H.L., (Wiley-Interscience, New York, 1987) 469506.
10. Barnett, J.D., Block, S., Piermarini, G.J., Rev. Sci. Instrum. 44, 441 (1973).
11. Knight, D.S. ans White, W.B., J. Material Res. 4. 385 (1989).
12. Yoo, C.S. and Nellis, W.J., Science 254, 1489 (1991).
13. Regueiro, M.N., Monceau, P., and Hodeau, J.-L., Nature 355, 237 (1992).
14. Yoo, C.S., Nellis, W.J., Sattler, M.L., and Musket, R.G., submitted to J. Appl. Phys. (1992).
15. Wada, N., Gaczi, P.J., and Solin, S.A., J. Noncryst. Solids 35&36, 543 (1980); M. Ramsteiner, J. Wagner, Ch. Wild, and P. Koidl, J. Appl. Phys. 2, 729 (1987)
16. Stanton, R.E. and Newton, M.D., J. Phys. Chem. 92, 2141 (1988); W.G. Harter andD.E. Weeks, J. Chem. Phys..9Q, 4727 (1989) and ibid 90, 4744 (1989)
17. Beeman, D., Silverman, J., Lynds, R., and Anderson, M.R., Phys. Rev. B30, 870 (1984).

C60 Transformations at High Pressures

  • C. S. Yoo (a1), W. J. Nellis (a1), M. L. Sattler (a1), R. G. Musket (a1), N. Hinsey (a1) and W. Brocious (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed