Skip to main content Accessibility help
×
Home

Buried Metal Deposition on Gallium Arsenide by Laser-Induced Thermochemical Reaction

  • Jun Tokuda (a1), Mikio Takai (a1), Kenji Gamo (a1) and Susumu Namba (a1)

Abstract

Tin oxide deposition was performed by focused argon ion laser irradiation in a tin tetrachloride gas atmosphere. Etching of gallium arsenide and tin oxide deposition were observed in a single scan of a laser beam under specific conditions. The center of the irradiated area was etched and then covered with deposit. Density ratio of 0/Sn obtained from the deposit by AES measurements was about 1.4 - 1.6. Additional hydrogen gas in ambient SnCl4 gas reduced both tin oxide deposition and gallium arsenide etching. Deposition, at first, occurred at the outer side of the irradiated area and gallium arsenide etching occurred at the center of it. The amount of deposit depends on beam dwell time. Additional oxygen in ambient SnCl4 gas improved deposited film quality: the deposited film with additional oxygen proved to be tin dioxide, which is an conductor.

Copyright

References

Hide All
1 Jasinski, J.M., Meyerson, B.S., and Nguyen, T.N., Appl. Phys. Lett. 61,431 (1987).
2 Nishizawa, J., Kurabayashi, T., and Hoshina, J., J. E1ectrochem. Soc. 134, 502 (1987).
3 Tsao, J.Y., Ehrlich, D.J., Silversmith, D.J., and Mountain, R.W., IEEE Electorn Dev. Lett. EDL-3, 164 (1982).
4 McWilliams, B.M., Herman, I.P., Mitlitsky, F., Hyde, R.A., and Wood, L.L., Appl. Phys. Lett. 43, 946 (1983).
5 Arikado, T., Sekine, M., Okano, H., and Horiike, Y., Mater. Res. Soc. Symp. Proc. 29, 167 (1984).
6 Baum, T.H., Marinero, E.E., and Jones, CR., Appl. Phys. Lett. 49, 1213 (1986).
7 Higashi, G.S., and Fleming, C.G., Appl. Phys. Lett. 48, 1051 (1986).
8 Ehrlich, D.J., Osgood, R.M. Jr., and Deutsch, T.F., Appl. Phys. Lett. 38, 946 (1981).
9 Ehrlich, D.J., Osgood, R.M. Jr., and Deutsch, T.F., Appl. Phys. Lett. 39, 957 (1981).
10 Yokoyama, H., Uesugi, F., Kishida, S., and Washio, K., Appl. Phys. A 37, 25 (1985).
11 Ishizu, A., Inoue, Y., Nishimura, T., Akasaka, Y., and Miki, H., Jpn. J. Appl. Phys. 25, 1830 (1986).
12 Takai, M., Tokuda, J., Nakai, H., Gamo, K., and Namba, S., Jpn. J. Appl. Phys. 22, L753 (1983).
13 Takai, M., Tsuchimoto, J., Nakai, H., Gamo, K., and Namba, S., Jpn. J. Appl. Phys. 23, L852 (1984).
14 Tokuda, J., Takai, M., Gamo, K., and Namba, S., Proc. on Dry Process Symposium (E 1 ectrochem. Soc, in press); J. Tokuda, M. Takai, K. Gamo, and S. Namba, 172nd Electrochemical Society Meeting, Honolulu, October, 1987, Abstract No.750.
15 Tokuda, J., Takai, M., Nakai, H., Gamo, K., and Namba, S., J. Opt. Soc. Am. B. 4, 267 (1987).
16 Takai, M., Nakai, H., Tsuchimoto, J., Gamo, K., and Namba, S., Jpn. J. Appl. Phys. 24, L705 (1985).

Related content

Powered by UNSILO

Buried Metal Deposition on Gallium Arsenide by Laser-Induced Thermochemical Reaction

  • Jun Tokuda (a1), Mikio Takai (a1), Kenji Gamo (a1) and Susumu Namba (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.