Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T08:32:51.199Z Has data issue: false hasContentIssue false

Buffer Layer Thickness and the Properties of InN Thin Films on AIN- Seeded (00.1) Sapphire And (111) Silicon

Published online by Cambridge University Press:  21 February 2011

T. J. Kistenmacher
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland, 20723–6099
S. A. Ecelberger
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland, 20723–6099
W. A. Bryden
Affiliation:
Milton S. Eisenhower Research Center, Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland, 20723–6099
Get access

Abstract

Introduction of a buffer layer to facilitate heteroepitaxy in thin films of the Group IIIA nitrides has had a tremendous impact on growth morphology and electrical transport. While AIN- and self-seeded growth of GaN has captured the majority of attention, the use of AIN-buffered substrates for InN thin films has also had considerable success. Herein, the properties of InN thin films grown by reactive magnetron sputtering on AIN-buffered (00.1) sapphire and (111) silicon are presented and, in particular, the evolution of the structural and electrical transport properties as a function of buffer layer sputter time (corresponding to thicknesses from ∼50Å to ∼0.64 μm) described. Pertinent results include: (a) for the InN overlayer, structural coherence and homogeneous strain normal to the (00.1) growth plane are highly dependent on the thickness of the AIN-buffer layer; (b) the homogeneous strain in the AIN-buffer layer is virtually nonexistent from a thickness of 200Å (where a significant X-ray intensity for (00.2)AIN is observed); and (c) the n-type electrical mobility for films on AIN-nucleated (00.1) sapphire is independent of AIN-buffer layer thickness, owing to divergent variations in carrier concentration and film resistivity. These effects are in the main interpreted as arising from a competition between the lattice mismatch of the InN overlayer with the substrate and with the AIN-buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For recent thin film results, see: Powell, R. C., Lee, N.-E., and Greene, J. E., Appl. Phys. Lett. 60, 2505 (1992);Google Scholar
Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 62, 2859 (1993);Google Scholar
Abernathy, C. R., J. Vac. Sci. Tech. A 11, 869 (1993);Google Scholar
Meng, W. J., Sell, J. A., Perry, T. A., and Eesley, G. L., J. Vac. Sci. Tech. A 11, 1377 (1993);Google Scholar
Nakamura, S., Senoh, M., and Mukai, T., Appl. Phys. Lett. 62, 2390 (1993);Google Scholar
Lin, M. E., Sverdlov, B., Zhou, G. L., and Morkoc, H., Appl. Phys. Lett. 62, 3479 (1993);Google Scholar
Khan, M. A., Bhattarai, A., Kuznia, J. N., and Olsen, D. T., Appl. Phys. Lett. 63, 1214 (1993);Google Scholar
Wang, C. and Davis, R. F., Appl. Phys. Lett. 63, 990 (1993);Google Scholar
Amano, H., Watanabe, N., Koide, N., and Akasaki, I., Jpn. J. Appl. Phys. 32, L1000 (1993);Google Scholar
Lin, W. P., Lundquist, P. M., Wong, G. K., Rippert, E. P., and Ketterson, J. B., Appl. Phys. Lett. 63, 2875 (1993);Google Scholar
Bu, Y., Ma, L., and Lin, M. C.. J. Vac. Sci. Tech. A 11, 2931 (1993);Google Scholar
Miragliotta, J., Wickenden, D. K., Bryden, W. A., and Kistenmacher, T. J., J. Opt. Soc. Am. B 10, 1447 (1993);Google Scholar
Rubin, M., Newman, N., Chan, J. S., Fu, T. c., and Ross, J. T., Appl. Phys. Lett. 64, 64 (1994).Google Scholar
2. Yoshida, S., Misawa, S., and Gonda, S., Appl. Phys. Lett. 42, 427 (1983).Google Scholar
3. Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 415 (1988).Google Scholar
4. Amano, H., Kito, M., Hiramatsu, K., and Akasaki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
5. Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 71, 5543 (1992).Google Scholar
6. Wickenden, D. K., Kistenmacher, T. J., Bryden, W. A., Morgan, J. S., and Wickenden, A. E., Proc. Mater. Res. Soc. 221, 167 (1991).Google Scholar
7. Kistenmacher, T. J., Ecelberger, S. A., and Bryden, W. A., J. Appl. Phys. 74, 1684 (1993).Google Scholar
8. Kistenmacher, T. J. and Bryden, W. A., Appl. Phys. Lett. 62, 1221 (1993).Google Scholar
9. See, for example: Kamine, T. I., J. Appl. Phys. 42, 4357 (1971);Google Scholar
Seto, J. Y. W., J. Appl. Phys. 46, 5247 (1975).Google Scholar
10. Malta, D. M., von Windheim, J. A., and Fox, B. A., Appl. Phys. Lett. 62, 2926 (1993).Google Scholar