Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-10T06:27:27.422Z Has data issue: false hasContentIssue false

Bubbles and Cavities Induced by Rare Gas Implantation in Silicon Oxide

Published online by Cambridge University Press:  01 February 2011

E. Ntsoenzok
Affiliation:
CNRS-CERI, 3A, rue de la férollerie, 45071 Orléans, France
H. Assaf
Affiliation:
CNRS-CERI, 3A, rue de la férollerie, 45071 Orléans, France
M.O. Ruault
Affiliation:
CSNSM, CNRS-IN2P3, Batiment 108-F-91405 Orsay, France
Get access

Abstract

In this pioneering study, we have extended noble-gas implant-induced cavity generation in Si and other semiconductors to a dielectric, viz., SiO2 by implanting a variety of inert gas species. It has been seen that helium and neon do not induce bubbles/cavities in SiO2, regardless of implantation parameters and nature of the sample. Krypton and xenon implantation however result in bubbles/cavities formation in the oxide layer. In the case of Xe a minimum threshold dose of about 1016 cm-2 is needed for their formation. Characterization by cross-section transmission electron microscopy (XTEM) and Rutherford backscattering spectrometry (RBS) showed that bubbles/cavities remain even after a 1100°C anneal, while Xe strongly desorbs out at that temperature. C-V measurements reveal that the effective dielectric constant K is reduced from 3.9 SiO2 for bulk SiO2 to < 2.6, thus making this technique very attractive for low-k applications in Si technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zhang, C.H., Chen, K.Q., Wang, Y.S., Sun, J.G., Shen, D.Y., Journal of Nuclear Materials 245, 210 (1997).Google Scholar
[2] Chernikov, V.N., Ullmaier, H., Zakharov, A.P., Journal of Nucl. Ma.t 258-263, 694 (1998).Google Scholar
[3]- Kaschny, J.R., Fichtener, P.F.P., Muecklich, A., Nucl. Instrum. Meth. B136-138, 583 (1998).Google Scholar
[4] Godey, S., Sauvage, T., Ntsoenzok, E., Erramli, H., Beaufort, M.F., Barbot, J.F., Leroy, B., J. Appl. Phys. 87, 2158 (1999).Google Scholar
[5] Bruel, M., Electronics Letters, 31, 1144 (1995).Google Scholar
[6] Kögler, R., Peeva, A., lebedev, A., Posselt, M., Skorupa, W., Oezelt, G., Hutter, H., Behar, M., J. Appl. Phys. 94, 3834 (2003).Google Scholar
[7] Semiconductor Industry Association, International Technology Roadmap for semiconductors, 2001 Edition, (http:// public.itrs.net/files/2001 ITRS/Home.htm).Google Scholar
[8] Ree, M., Chen, K.-J., Kirby, P., J. Appl. Phys. 72, 2014 (1992).Google Scholar
[9] Wang, Y.H., Moitreyee, M.R., Kumar, R., Wu, S.Y., Xie, J.L., Yew, P., Subramanian, B., Shen, L., Zeng, K.Y., Thin Solid Films 462–463, 211 (2004).Google Scholar
[10] Griffioen, C.C., Evans, J.H., Jong, P.C. de, Veen, A. Van, Nucl. Instrum. Meth. B27, 417 (1987).Google Scholar
[11] Schwickert, M., Lieb, K.P., Bolse, W., Gustafsson, M., Keinonen, J., Nucl. Instrum. Meth. B147, 238 (1999).Google Scholar
[12] Wulf, R., Calas, G., Ramos, A., Buttner, H., Roselieb, K., Rosenhauer, M., American Mineralogist, Vol 84, pp.14611463, (1999).Google Scholar
[13] Guillot, B., Guissani, Y., J. Chem. Phys. 105, 255 (1996).Google Scholar
[14] Boganov, A.G., Rudenko, V.S., Cheremisin, I.I., Soviet-Journal of Glass physics and Chemistry 10, 136 (1984).Google Scholar
[15] Jung, P., Nucl. Instr. and Meth. B91, 362 (1994).Google Scholar
[16] Hasegawa, M., Tabata, M., Fujinami, M., Ito, Y., Sunaga, H., Okada, S., Yamaguchi, S., Nucl. Instr. and Meth. B116, 347 (1996).Google Scholar
[17] Lifshitz, I.M., Slyosov, V.V., J. Phys. Chem. Solids 19, 35 (1961).Google Scholar
[18] Raineri, V., Saggio, M., Rimini, E., J.Mater. Res. 15, 1449 (2000).Google Scholar
[19] Grisolia, J., Claverie, A., Assayag, G. Ben, Godey, S., Ntsoenzok, E., Labhom, F., Veen, A. Van, J.Appl. Phys. 91, 9027 (2002).Google Scholar