Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T08:31:19.923Z Has data issue: false hasContentIssue false

Boron Doping using Proximity Rapid Thermal Diffusion from Spin-on-Dopants

Published online by Cambridge University Press:  22 February 2011

M. Rastogi
Affiliation:
Electrical Engineering Department, University of Houston, Houston, TX
W. Zagozdzon-Wosik
Affiliation:
Electrical Engineering Department, University of Houston, Houston, TX
F. Romero-Borja
Affiliation:
Texas Center for Superconductivity and Physics Department
J. M. Heddleson
Affiliation:
Solid State Measurements Inc., Pittsburgh, PA
R. Beavers
Affiliation:
Texas Instruments, Material Characterization Laboratoiy Dallas, TX
P. Grabiec
Affiliation:
Institute of Electron Technology, Warsaw, Poland
L. T. Wood
Affiliation:
Texas Center for Superconductivity and Physics Department
Get access

Abstract

Proximity rapid thermal diffusion (RTD) has been investigated as a doping technique for p-type boron doped junctions. The efficiency of RTD has been studied as a function of process variables (temperature, time, and ambient) and evaluated based on sheet resistance measurements, secondary ion mass spectroscopy (SIMS), spreading resistance (SR), and Fourier transmission infrared absorption (FTIR) in a spin-on-dopant source (SOD). The doping efficiency in source wafers is controlled by different mechanism than in processed wafers. Strong influence of dopant incorporation in the processed wafers on oxygen content in the diffusion ambient is observed especially at low diffusion temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nishizawa, J., Aoki, K., and Akamine, T., Appl. Phys. Lett. 56, 1334 (1990).CrossRefGoogle Scholar
2 Carey, P. G., Weiner, K. H., and Sigmon, T. W., IEEE Electron Dev. Lett. 9, 542 (1988).CrossRefGoogle Scholar
3 Osburn, C. M., J. Electronic Materials 19, 67 (1990).CrossRefGoogle Scholar
4 Probst, V., Bohm, H. J., Schaber, H., Oppolzer, H., and Weitzel, I., J. Electrochem. Soc. 135, 671 (1988).CrossRefGoogle Scholar
5 Zagozdzon-Wosik, W., Grabiec, P., and Lux, G., MRS Spring Meeting, 1993, in MRS Proc. 303, eds. Gelpey, J. C., Elliot, J. Kiefer, Wortman, J. J., and Ajmara, A..Google Scholar
6 Miyake, M., J. Electrochem. Soc. 138, 3031 (1991).CrossRefGoogle Scholar
7 Dominquez, E. and Jaraiz, M., J. Electrochem. Soc. 133, 1895 (1986).CrossRefGoogle Scholar
8 Ho, C. P., Plummer, J. D., Hauser, S. E., and Dutton, R. W.. IEEE Trans. Electron Dev. 30, 1438 (1983).CrossRefGoogle Scholar
9 Ommen, A. H. Van, Appl. Surface Science 30, 244 (1987).CrossRefGoogle Scholar
10 Justice, B. H., Wooster, G. S., Ayckock, R. F., Sanders, D. R., Solid State Technol., Oct, (1984).Google Scholar
11 Rupprecht, D. and Stach, J., J. Electrochem. Soc. 120, 1266 (1973).CrossRefGoogle Scholar
12 Massoud, H. Z., in Rapid Thermal Processing, ed. Fair, R. B., Academic Press, Inc., (1993).Google Scholar
13 Zagozdzon-Wosik, W., Grabiec, P., and Lux, G., J. Appl. Phys. 75, 337 (1994).CrossRefGoogle Scholar