Skip to main content Accessibility help
×
Home

Boron Diffusion and Silicon Self-Interstitial Recycling between SiGeC layers

  • M. S. Carroll (a1) and J. C. Sturm (a1)

Abstract

Substitutional carbon is known to locally reduce silicon self-interstitial concentrations and act as a barrier to self-interstitial migration through the carbon rich regions. A silicon spacer between two carbon rich SiGe layers is fabricated in this work to examine self-interstitial generation in a region that is isolated from self-interstitial formation at the surface or in the silicon bulk. Boron marker layers above, below and in between two SiGeC layers are used to monitor the self-interstitial concentration between the substitutional carbon. No evidence of self- interstitial depletion in the silicon spacer is observed, despite annealing in conditions believed sufficient to allow the self-interstitials to reach and react with surrounding substitutional carbon. Simulations of the self-interstitial and carbon indicate that the silicon self interstitial concentration in the spacer layer can be sustained in part due to a silicon self-interstitial recycling process through a reverse “kick-out” reaction.

Copyright

Corresponding author

Current address: Sandia National Laboratories, Albuquerque, NM 87185-1077

References

Hide All
1. Gossmann, H.-J., Haynes, T. E., Stolk, P. A., Jacobson, D. C., Gilmer, G. H., Poate, J. M., Luftman, H. S., Mogi, T. K., and Thompson, M. O., Appl. Phys. Lett., vol. 71, pp. 3862, 1997.
2. Fang, W. T. C., Fang, T. T., Griffin, P. B., and Plummer, J. D., Appl. Phys. Lett., vol. 68, pp. 2085, 1996.
3. Ural, A., Griffin, P. B., and Plummer, J. D., J. Appl. Phys., vol. 85, pp. 6440, 1999.
4. Bracht, H., Haller, E. E., and Clark-Phelps, R., Phys. Rev. Lett., vol. 81, pp. 393, 1998.
5. Pinto, M. R., Boulin, D. M., Rafferty, C. S., Smith, R. K., Coughran, W. M., Kizilyalli, I. C., and Thoma, M. J., Tech. Digest IEDM, pp. 923, 1992.
6. Carroll, M., Sturm, J. C., Napolitani, E., Salvador, D. De, Berti, M., Stangl, J., and Bauer, K., Phys. Rev. B, vol. 64, pp. 3308, 2001.
7. Dunham, S. T. and Plummer, J. D., J. Appl. Phys., vol. 71, pp. 685, 1992.
8. Kuo, P., Hoyt, J. L., Gibbons, J. F., Turner, J. E., and Lefforge, D., Appl. Phys. Lett., vol. 67, pp. 706, 1995.
9. Carroll, M., Sturm, J. C., and Buyuklimanli, T., Phys. Rev. B, vol. 64, pp. 5316, 2001.
10. Carroll, M., Chang, C.-L., Sturm, J. C., and Buyuklimanli, T., Appl. Phys. Lett., vol. 73, pp. 3695, 1998.
11. Scholz, R., Goesele, U., Huh, J. Y., and Tan, T. Y., Appl. Phys. Lett., vol. 72, pp. 2, 1998.
12. Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys., vol. 61, pp. 289, 1989.
13. Roth, D. J. and Plummer, J. D., J. Electrochem. Soc., vol. 141, pp. 1074, 1994.
14. Pindl, S., Biebl, M., and Hammerl, E., J. Electrochemical Soc., vol. 144, pp. 4022, 1997.
15. Gossmann, H.-J., Rafferty, C. S., Luftmann, H. S., Unterwald, F. C., Boone, T., and Poate, J. M., Appl. Phys. Lett., vol. 63, pp. 639, 1993.
16. Scholz, R. F., Werner, P., Goesele, U., and Tan, T. Y., Appl. Phys. Lett., vol. 74, pp. 392, 1999.
17. Ruecker, H., Heinemann, B., and Kurps, R., Phys. Rev. B, vol. 64, pp. 073202, 2001.
18. Ural, A., Griffin, P. B., and Plummer, J. D., Phys. Rev. Lett., vol. 83, pp. 3454, 1999.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed