Skip to main content Accessibility help
×
Home

Blue Light Electroluminescence From Doped μc-SiC prepared by Excimer (ArF) Laser Crystallisation

  • S. P. Lau (a1), J. M. Marshall (a1), T. E. Dyer (a1), A. R. Hepburn (a1) and J. F. DaVies (a1)...

Abstract

A novel method has been developed to prepare highly conductive and wide band gap doped (B2H6/PH3) microcrystalline silicon carbide (μ-SiC) by excimer (ArF) laser crystallisation. Doped a-SiC:H films were prepared by Plasma Enhanced Chemical Vapour Deposition (PECVD), both with and without H2 dilution. After crystallisation, this material has Taue gap of around 2.0 eV and exhibits a dark conductivity as high as 20 (Ωcm)-1, more than ten orders of magnitude higher than before the laser irradiation. This is shown to be mainly due to the formation of SiC microcrystallites in the laser crystallised a-SiC:H.

In this paper, we report that this material can be utilised not only as the carrier injection layer in a-SiC:H based Thin Film Light Emitting Diodes (TFLEDs) but also as a luminescent layer. Blue light emission has been observed from a laser crystallised (LC) doped μc-SiC based electroluminescent device, the peak wavelength is around 490nm.

The simplicity of excimer (ArF) laser crystallisation and its capability to fabricate poly-Si TFTs, makes this a promising novel method to realise fully integrated Si large area multi-colour displays.

Copyright

References

Hide All
1. Matsumoto, Y., Hirata, G., Takakura, H., Okamoto, H. and Hamakawa, Y., J. App. Phys. 67, 6538 (1990.
2. Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H. and Hamakawa, Y., J. of Non-Cryst. Solids 98&98 293 (1987).
3. Futagi, T., Matsumoto, T., Katsuno, M., Onta, Y., Mimura, H., and Kitamura, K. in Microcrystalline Semiconductors: Materials Science & Devices, edited by Fauchet, P.M., Tsai, C.C., Canham, L.T., Shimizu, I. and Aoyagi, Y. (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993) 389.
4. Dyer, T.E., Marshall, J.M., Pickin, W., Hepburn, A.R. and Davies, J.F., J.Non-Cryst. Solids 164–166 1001 (1993).
5. Sameshima, T. (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993) 679.
6. Lau, S.P., Marshall, J.M., Dyer, T.E., Hepburn, A.R. and Davies, J.F., J.Non-Cryst. Solids 164–166 813 (1993).
7. Kruangam, D., Endo, T., Deguchi, M., Pu, W.G., Okamota, H. and Hamakawa, Y., Optoelectronics-Devices and Technologies 1 67 (1986).
8. Yoshimi, M., Shimizu, H., Hattori, K., Okamoto, H. and Hamakawa, Y.. Optoelectronics-Devices and Technologies 7 69 (1992).
9. Martinez, M., Herrero, J. and Gutierrez, M.T., Solar Energy Materials and Solar cells 26 309 (1992).
10. Sze, S.M., Semiconductor Devices. Physics and Technology (John Wiley & Sons, New York, 1985), p. 225.
11. Nishino, S. and Saraie, J., in Amorphous and Crystalline Silicon Carbide and Related Materials, edited by Harris, G.L. and Yang, C.Y.-W. (Springer-Verlag, Berlin Heidelberg, 1989) p. 186.
12. Demichelis, F., Pirri, C.F., and Tresso, E., J. Appl. Phys 72 1327 (1992).
13. Futagi, T., Ohtani, N., Katsuno, M., Kawamura, K., Ohta, Y., Mimura, H. and Kitamura, K., J. of Non-Cryst. Solids 137 1271 (1991).
14. Hou, X.Y., Shi, G., Wang, W., Zhang, F.L., Hao, P.H., Huang, D.M., Jin, X.F. and Wang, X., (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993) 89.
15. Matsumoto, T., Takahashi, J., Tamaki, T., Futagi, T. Mimura, H. and Kanemitsu, Y., J. Appl. Lett 64 226 (1994).
16. Dubbelday, W.B., Szaflarski, D.M., Shimabakuro, R.I. and Russell, S.D., (Mater. Res. Soc. Proc. 283, Pittsburgh, PA, 1993) 161.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed