Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T01:40:41.512Z Has data issue: false hasContentIssue false

Blue and Green Electroluminescence from Porous Materials

Published online by Cambridge University Press:  28 February 2011

H. Mimura
Affiliation:
ATR Optical and Radio Communications Research Laboratories, 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02
T. Matsumoto
Affiliation:
Electronics Research Laboratories, Nippon Steel Corporation, Sagamihara, Kanagawa 229
Y. Kanemitsu
Affiliation:
Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

In applying porous Si (PS) to color display technology, it is important to fabricate light emitting devices with three primary colors. However, there have been few reports on blue and green electroluminescence (EL), and its mechanism (even the relationship between PL and EL spectra) is unclear. To obtain blue and green EL and to investigate its mechanism, we have formed PS anodized under UV illumination (UV-PS) with green photoluminescence (PL) and porous SiC with blue PL. Consequently, green and blue light emitting devices were successfully fabricated by using these materials. The observed spectra are from 350 to 750 nm with a peak of, 520 nm for ITO / UV-PS junctions and from 300 to 600 nm with a peak of 470 nm for ITO / porous SiC junctions. The EL mechanism is also discussed by reference to experimental results of comparing PL and EL spectra and of investigating the dependence of EL intensity on current.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Richer, A., Steiner, P., Kozlowski, F. and Lang, W., IEEE Electron Dev. Lett. 12, 691 (1991).Google Scholar
2 Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 347 (1992).Google Scholar
3 Namavar, F., Maruska, H.P. and Kalkhoran, N.M., Appl. Phys. Lett. 60, 2514 (1992).Google Scholar
4 Futagi, T., Matsumoto, T., Katsuno, M., Ohta, Y., Mimura, H. and Kitamura, K., Jpn.J.Appl.Phys. 31, L616 (1992).Google Scholar
5 Steiner, P., Kozlowski, F. and Lang, W., Appl. Phys. Lett. 62, 2700 (1993).Google Scholar
6 Steiner, P., Kozlowski, F. and Lang, W., IEEE Electron Dev. Lett. 14, 317 (1993).Google Scholar
7 Futagi, T., Matsumoto, T., Katsuno, M., Ohta, Y., Mimura, H. and Kitamura, K., Appl. Phys. Lett. 63, 1209 (1993).Google Scholar
8 Koshida, N., Koyama, H., Yamamoto, Y. and Collins, G.J., Appl. Phys. Lett. 63, 2655 (1993).Google Scholar
9 Li, K., Diaz, D.C., He, Y. and Campbel, J.C. and Tsai, C., Appl. Phys. Lett. 64, 2394 (1994).Google Scholar
10 Matsumoto, T., Futagi, T., Mimura, H. and Kanemitsu, Y., Phys. Rev.B 47,13876 (1993).Google Scholar
11 Kanemitsu, Y., Uto, H., Masumoto, Y., Matsumoto, T., Futagi, T. and Mimura, H., Phys. Rev.B 48, 2827(1993).Google Scholar
12 Mimura, H., Futagi, T., Matsumoto, T., Nakamura, T. and Kanemitsu, Y., Jpn. J. Appl. Phys. 33, 570(1994).Google Scholar
13 Kanemitsu, Y., Futagi, T., Matsumoto, T. and Mimura, H., Phys. Rev.B 49, 14732 (1994).Google Scholar
14 Lehmann, V. and Gosele, U., Appl. Phys. Lett. 58, 856 (1991).Google Scholar
15 Takeda, K., J. Phys. Soc. Jpn. Suppl.B 63, 1 (1994).Google Scholar
16 Matsumoto, T., Tamaki, T., Futagi, T., Mimura, H. and Kanemitsu, Y., Mater. Res. Soc. Symp. Proc. 298, 355 (1993).Google Scholar
17 Matsumoto, T., Takahashi, J., Tamaki, T., Futagi, T., Mimura, H. and Kanemitsu, Y., Appl.Phys. Lett. 64, 226(1994).Google Scholar
18 Acheson, A.G., England Patent 17911 (1892).Google Scholar