Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T19:15:19.906Z Has data issue: false hasContentIssue false

Bismuth-Induced Layer-by-Layer Growth in the Homoepitaxial Growth of Fe(100)

Published online by Cambridge University Press:  11 February 2011

Masao Kamiko
Affiliation:
Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo, 153–8505, JAPAN.
Hiroaki Chihaya
Affiliation:
Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo, 153–8505, JAPAN.
Hiroyuki Mizuno
Affiliation:
Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo, 153–8505, JAPAN.
Junhua Xu
Affiliation:
National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, Higashi 1–1, Tsukuba, Ibaraki 305–8565, JAPAN
Isao Kojima
Affiliation:
National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, Higashi 1–1, Tsukuba, Ibaraki 305–8565, JAPAN
Ryoichi Yamamoto
Affiliation:
Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo, 153–8505, JAPAN.
Get access

Abstract

We have investigated the effect of Bi on the homoepitaxial growth of Fe(100) by means of reflection high-energy electron diffraction (RHEED). It was clearly found that Bi induces layer-by-layer growth of Fe on Fe(100)-c(2×2)O reconstruction surface. The result of the dependence of the growth behavior as a function of Bi layer thickness suggests that there is optimum amount of Bi surfactant layer that induces the smoother layer-by-layer growth. A strong surface segregation of Bi was found at the top of surface and acts as a surfactant by promoting the interlayer transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Copel, M., Reuter, M. C., Kaxiras, E. and Tromp, R. M., Phys. Rev. lett. 63, 632 (1989).Google Scholar
2. Mae, K., Kyuno, K. and Yamamoto, R., Modelling Simul. Mater. Sci. Eng. 4, 73 (1996).Google Scholar
3. Bertacco, R., De Rossi, S. and Ciccacci, F., J. Vac. Sci. Technol. A16, 2277 (1998).Google Scholar
4. Bonanno, P., Canepa, M., Cantini, P., Moroni, R., Mattera, L. and Terreni, S., Surf. Sci. 454–456, 697 (2000).Google Scholar
5. Bisio, F, Moroni, R., Canepa, M., Mattera, L., Bertacco, R. and Ciccacci, F., Phys. Rev. lett. 83, 4868 (1999).Google Scholar
6. Ehrlich, G. and Hudda, F. G., J. Chem. Phys. 44, 1030 (1966).Google Scholar
7. Schwoebel, R. L. and Shipsey, E. J., J. Appl. Phys. 37, 3682 (1966).Google Scholar
8. van der Vegt, H. A., Vrijimoeth, J., Behm, R. J. and Vlieg, E., Phys. Rev. B57, 4127 (1998).Google Scholar