Skip to main content Accessibility help
×
Home

Biosensors for Food Toxin Detection: Carbon Nanotubes and Graphene

  • Bansi D. Malhotra (a1) (a2), Saurabh Srivastava (a1) and Shine Augustine (a1)

Abstract

There is increased interest towards the application of carbon based nanomaterials to biosensors since these can be used to quickly detect presence of the toxins in food, agricultural and environmental systems. The accurate, faster and early detection of food toxins is presently very important for ensuring safety and shelf life of agricultural commodities resulting from food contamination. The carbon materials (CNTs) and recently discovered graphene have been predicted to be promising candidates in the development of electrochemical biosensor owing to their exceptionally large surface area and interesting electrochemical properties. We focus on some of the recent results obtained in our laboratories pertaining to the development of biosensors based on multi-walled carbon nanotubes and graphene for mycotoxin(aflatoxin ) detection.

Copyright

Corresponding author

* Corresponding Author: bansi.malhotra@gmail.com

References

Hide All
1. Kralj Cigić, I. and Prosen, H.: An overview of conventional and emerging analytical methods for the determination of mycotoxins. International journal of molecular sciences 10, 62 (2009).
2. Köppen, R., Koch, M., Siegel, D., Merkel, S., Maul, R. and Nehls, I.: Determination of mycotoxins in foods: current state of analytical methods and limitations. Applied microbiology and biotechnology 86, 1595 (2010).
3. Turner, N.W., Subrahmanyam, S. and Piletsky, S.A.: Analytical methods for determination of mycotoxins: a review. Analytica chimica acta 632, 168 (2009).
4. Palchetti, I. and Mascini, M.: Electroanalytical biosensors and their potential for food pathogen and toxin detection. Analytical and bioanalytical chemistry 391, 455 (2008).
5. Ligler, F.S., Taitt, C.R., Shriver-Lake, L.C., Sapsford, K.E., Shubin, Y. and Golden, J.P.: Array biosensor for detection of toxins. Analytical and bioanalytical chemistry 377, 469 (2003).
6. Rasooly, A. and Herold, K.E.: Biosensors for the analysis of food-and waterborne pathogens and their toxins. Journal of AOAC International 89, 873 (2006).
7. Scott, P., Lawrence, J. and Van Walbeek, W.: Detection of mycotoxins by thin-layer chromatography: application to screening of fungal extracts. Applied Microbiology 20, 839 (1970).
8. Frisvad, J.C. and Thrane, U.: Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV—VIS spectra (diodearray detection). Journal of Chromatography A 404, 195 (1987).
9. Shephard, G., Sydenham, E., Thiel, P. and Gelderblom, W.: Quantitative determination of fumonisins B1 and B2 by high-performance liquid chromatography with fluorescence detection. Journal of Liquid Chromatography 13, 2077 (1990).
10. Berthiller, F., Schuhmacher, R., Buttinger, G. and Krska, R.: Rapid simultaneous determination of major type A-and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1062, 209 (2005).
11. Pestka, J.: Enhanced surveillance of foodborne mycotoxins by immunochemical assay. Journal-Association of Official Analytical Chemists 71, 1075 (1987).
12. Molinelli, A., Grossalber, K. and Krska, R.: A rapid lateral flow test for the determination of total type B fumonisins in maize. Analytical and bioanalytical chemistry 395, 1309 (2009).
13. Kos, G., Lohninger, H. and Krska, R.: Fourier transform mid-infrared spectroscopy with attenuated total reflection (FT-IR/ATR) as a tool for the detection of< i> Fusarium</i> fungi on maize. Vibrational Spectroscopy 29, 115 (2002).
14. van der Gaag, B., Spath, S., Dietrich, H., Stigter, E., Boonzaaijer, G., van Osenbruggen, T. and Koopal, K.: Biosensors and multiple mycotoxin analysis. Food Control 14, 251 (2003).
15. Pohanka, M., Jun, D. and Kuca, K.: Mycotoxin assays using biosensor technology: A review. Drug and chemical toxicology 30, 253 (2007).
16. Gerard, M., Chaubey, A. and Malhotra, B.: Application of conducting polymers to biosensors. Biosensors and Bioelectronics 17, 345 (2002).
17. Pandey, P., Datta, M. and Malhotra, B.: Prospects of nanomaterials in biosensors. Analytical Letters 41, 159 (2008).
18. Solanki, P.R., Kaushik, A., Agrawal, V.V. and Malhotra, B.D.: Nanostructured metal oxide-based biosensors. NPG Asia Materials 3, 17 (2011).
19. Ansari, A.A., Kaushik, A., Solanki, P. and Malhotra, B.: Sol–gel derived nanoporous cerium oxide film for application to cholesterol biosensor. Electrochemistry Communications 10, 1246 (2008).
20. Arya, S.K., Solanki, P.R., Datta, M. and Malhotra, B.D.: Recent advances in self-assembled monolayers based biomolecular electronic devices. Biosensors and Bioelectronics 24, 2810 (2009).
21. Ajayan, P.M. and Zhou, O.Z.: Applications of carbon nanotubes, in Carbon nanotubes (Springer2001), pp. 391.
23. Wang, J.: Carbon nanotube based electrochemical biosensors: A review. Electroanalysis 17, 7 (2005).
24. Kavan, L. and Dunsch, L.: Electrochemistry of carbon nanotubes, in Carbon Nanotubes (Springer2008), pp. 567.
25. Pumera, M.: The electrochemistry of carbon nanotubes: fundamentals and applications. Chemistry-A European Journal 15, 4970 (2009).
26. Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nature materials 6, 183 (2007).
27. Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I.A. and Lin, Y.: Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22, 1027 (2010).
28. Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A. and Röhrl, J.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature materials 8, 203 (2009).
29. Li, X., Cai, W., Colombo, L. and Ruoff, R.S.: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters 9, 4268 (2009).
30. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I. and Tutuc, E.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).
31. Wang, X., You, H., Liu, F., Li, M., Wan, L., Li, S., Li, Q., Xu, Y., Tian, R. and Yu, Z.: Large-Scale Synthesis of Few-Layered Graphene using CVD. Chemical Vapor Deposition 15, 53 (2009).
32. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T. and Ruoff, R.S.: Preparation and characterization of graphene oxide paper. Nature 448, 457 (2007).
33. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I., Holland, B., Byrne, M. and Gun'Ko, Y.K.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nature nanotechnology 3, 563 (2008).
34. Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S.: The chemistry of graphene oxide. Chemical Society Reviews 39, 228 (2010).
35. Pumera, M.: Graphene in biosensing. Materials today 14, 308 (2011).
36. Chen, J., Liu, D., Li, S. and Yao, D.: Development of an amperometric enzyme electrode biosensor for sterigmatocystin detection. Enzyme and Microbial Technology 47, 119 (2010).
37. Li, S.c., Chen, J.h., Cao, H., Yao, D.s. and Liu, D.l.: Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control 22, 43 (2011).
38. Yao, D.-S., Cao, H., Wen, S., Liu, D.-l., Bai, Y. and Zheng, W.-j.: A novel biosensor for sterigmatocystin constructed by multi-walled carbon nanotubes (MWNT) modified with aflatoxin–detoxifizyme (ADTZ). Bioelectrochemistry 68, 126 (2006).
39. Kaushik, A., Solanki, P.R., Pandey, M., Kaneto, K., Ahmad, S. and Malhotra, B.D.: Carbon nanotubes—chitosan nanobiocomposite for immunosensor. Thin Solid Films 519, 1160 (2010).
40. Dhand, C., Arya, S.K., Datta, M. and Malhotra, B.: Polyaniline–carbon nanotube composite film for cholesterol biosensor. Analytical biochemistry 383, 194 (2008).
41. Singh, C., Srivastava, S., Ali, M.A., Gupta, T.K., Sumana, G., Srivastava, A., Mathur, R. and Malhotra, B.D.: Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sensors and Actuators B: Chemical (2013).
42. Wu, S., Duan, N., Ma, X., Xia, Y., Wang, H., Wang, Z. and Zhang, Q.: Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Analytical chemistry 84, 6263 (2012).
43. Sheng, L., Ren, J., Miao, Y., Wang, J. and Wang, E.: PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosensors and Bioelectronics 26, 3494 (2011).
44. Norouzi, P., Larijani, B. and Ganjali, M.: Ochratoxin A Sensor Based on Nanocomposite Hybrid Film of Ionic Liquid-Graphene Nano-Sheets Using Coulometric FFT Cyclic Voltammetry. Int. J. Electrochem. Sci 7, 7313 (2012).
45. Srivastava, S., Kumar, V., Ali, M.A., Solanki, P.R., Srivastava, A., Sumana, G., Saxena, P.S., Joshi, A.G. and Malhotra, B.: Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale 5, 3043 (2013).
46. Srivastava, S., Ali, M.A., Umrao, S., Parashar, U.K., Srivastava, A., Sumana, G., Malhotra, B., Pandey, S.S. and Hayase, S.: Graphene oxide-based biosensor for food toxin detection. Applied biochemistry and biotechnology 174, 960 (2014).

Keywords

Related content

Powered by UNSILO

Biosensors for Food Toxin Detection: Carbon Nanotubes and Graphene

  • Bansi D. Malhotra (a1) (a2), Saurabh Srivastava (a1) and Shine Augustine (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.