Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T04:34:11.367Z Has data issue: false hasContentIssue false

Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications

Published online by Cambridge University Press:  17 March 2011

Tewodros Asefa
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Neil Coombs
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Hiltrud Grondey
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Mietek Jaroniec
Affiliation:
Department of Chemistry, Kent State University, Kent, Ohio, 44242, USA
Michal Kruk
Affiliation:
Department of Chemistry, Kent State University, Kent, Ohio, 44242, USA
Mark J. MacLachlan
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Geoffrey A. Ozin
Affiliation:
Materials Chemistry Research Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
Get access

Abstract

In recent years, the extraordinary properties of bio-inspired nanocomposites have stimulated great interest in the development of bottom-up synthetic approaches to organic-inorganic hybrid materials in which molecular scale control is exerted over the interface between the organic and inorganic moieties. These developments have led to advanced materials with novel properties and potential use in catalysis, sensing, separations and environmental remediation. Periodic mesoporous organosilica (PMO) materials are an entirely new class of nanocomposites with molecularly integrated organic/inorganic networks, high surface areas and pore volumes, and well ordered and uniform size pores and channels. We recently have extended the approach to include novel PMO materials incorporating chiral and heteroatom-containing organic functional groups inside the inorganic framework that may be useful in asymmetric catalysis, enantiomeric separations and heavy metal remediation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weiner, S., Addadi, L., and Wagner, H. D., Mater. Sci. Eng. C 11, 1 (2000).Google Scholar
2. Levi-Kalisman, Y., Falini, G., Addadi, L., and Weiner, S., J. Struct. Biol. 135, 8 (2001).Google Scholar
3. Becker, W., Marxen, J., Epple, M., and Reelsen, O., J. Appl. Physiology 89, 1601 (2000).Google Scholar
4. Louloudi, M., Deligiannakis, Y., and Hadjiliadis, N., J. Inorg. Biochem. 79, 93 (2000).Google Scholar
5. Louloudi, M., Deligiannakis, Y., and Hadjiliadis, N., Inorg. Chem. 37, 6847 (1998).Google Scholar
6. Nicolini, C., Biosensors & Bioelctronics 10, 105 (1995).Google Scholar
7. Zhou, B. L., Mater. Sci. Eng. C 11, 13 (2000).Google Scholar
8. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S., Nature 359, 710 (1992).Google Scholar
9. Asefa, T., MacLachlan, M. J., Coombs, N., and Ozin, G. A., Nature 402, 867 (1999).Google Scholar
10. Yoshina-Ishii, C., Asefa, T., Coombs, N., MacLachlan, M. J., and Ozin, G. A., Chem. Commun. 2539 (1999).Google Scholar
11. Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T., and Terasaki, O., J. Am. Chem. Soc. 121, 9611 (1999).Google Scholar
12. Melde, B. J., Holland, B. T., Blanford, C. F., and Stein, A., Chem. Mater. 11, 3302 (1999).Google Scholar
13. Asefa, T., MacLachlan, M. J., Grondey, H., Coombs, N., and Ozin, G. A., Angew. Chem. Int. Ed. Engl. 39, 1808 (2000).Google Scholar
14. Kruk, M., Jaroniec, M., Guan, S., and Inagaki, S., J. Phys. Chem. B 105, 681 (2001).Google Scholar
15. MacLachlan, M. J., Asefa, T., and Ozin, G. A., G. A. Chem. Eur. J. 6, 2507 (2000).Google Scholar
16. Asefa, T., Yoshina-Ishii, C., MacLachlan, M. J. and Ozin, G. A., J. Mater. Chem. 10, 1751 (2000).Google Scholar
17. Dag, Ö., Yoshina-Ishii, C., Asefa, T., MacLachlan, M. J., Grondey, H., and Ozin, G. A., Adv. Funct. Mater. 3, 213 (2001).Google Scholar
18. Asefa, T., Kruk, M., MacLachlan, M. J., Coombs, N., Grondey, H., Jaroniec, M., and Ozin, G. A., J. Am. Chem. Soc. 123, 8520 (2001).Google Scholar
19. Temtsin, G., Asefa, T., Bittner, S., and Ozin, G. A., J. Mater. Chem. 11, 3202 (2001).Google Scholar
20. Asefa, T., Kruk, M., Coombs, N., Petrov, S., Jaroniec, M., and Ozin, G. A., J. Mater. Chem., submitted.Google Scholar
21. Guan, S., Inagaki, S., Ohsuna, T., and Terasaki, O., J. Am. Chem. Soc. 122, 5660 (2000).Google Scholar
22. Lu, Y., Fan, H., Doke, N., Loy, D. A., Assink, R. A., LaVan, D. A., and Brinker, C. J., J. Am. Chem. Soc. 122, 5258 (2000).Google Scholar
23. Sayari, A., Hamoudi, S., Yang, Y., Moudrakovski, I. L., and Ripmeester, J. R., Chem. Mater. 12, 3857 (2000).Google Scholar
24. Hamoudi, S., Yang, Y., Moudrakovski, I. L., Lang, S., and Sayari, A., J. Phys. Chem. B 105, 9118 (2001).Google Scholar
25. Park, S. S., Lee, C. H., Cheon, J. H., and Park, D. H., J. Mater. Chem. 11, 3397 (2001).Google Scholar
26. Yamamoto, K., Nohara, Y., and Tatsumi, T., Chem. Lett. 648 (2001).Google Scholar
27. Burleigh, M. C., Dai, S., Hagaman, E. W., and Lin, J. S., Chem. Mater. 13, 2537 (2001).Google Scholar
28. Muth, O., Schellbach, C., and Fröba, M., Chem. Commun. 2032 (2001).Google Scholar
29. Asefa, T., Ozin, G. A., Grondey, H., Jaroniec, M., and Kruk, M., Stud. Surf. Sci. Catal. 141, 1 (2002).Google Scholar
30. Kuroki, M., and Ozin, G. A., Manuscript in preparation.Google Scholar
31. Tertykh, V. A., and Yanishpolskii, V. V., Surfactant Sci. Ser. 90, 523 (2000).Google Scholar
32. Rao, M. S., and Dave, B. C., J. Am. Chem. Soc. 120, 13270 (1998).Google Scholar
33. Denisova, T. I., Karpenko, G. F., Khalyavka, T. A., Shvetz, D. I., Adsorpt. Sci. Technol. 17, 139 (1999).Google Scholar
34. Fedorkiw, T., Asefa, T., and Ozin, G. A., Unpublished results.Google Scholar
35. Lim, M. H., Blanford, C. F. and Stein, A., Chem. Mater. 10, 467 (1998).Google Scholar
36. Fowler, C. E., Burkett, S. L. and Mann, S., Chem. Commun. 1769 (1997).Google Scholar
37. Asefa, T., Kruk, M., MacLachlan, M. J., Coombs, N., Grondey, H., Jaroniec, M. and Ozin, G. A., Adv. Funct. Mater. 11 (2001) in press.Google Scholar