Skip to main content Accessibility help
×
Home

Biocompatibility Studies of the Nitinol Thin Films

  • C.Z. Dinu (a1), R. Tanasa (a2), V.C. Dinca (a1), A. Barbalat (a1), C. Grigoriu (a1), E.O. Bucur (a2), A. Dauscher (a3), V. Ferrari DeStefano (a4) and M. Dinescu (a1)...

Abstract

Pulsed Laser Deposition method (PLD) was used to grow nitinol (NiTi) thin films with goal of investigating their biocompatibility. High purity Ni and Ti targets were alternatively ablated in vacuum with a laser beam (λ=355 nm, 10 Hz) and the material was collected on room temperature Ti substrates. X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy and atomic force microscopy analyses have been performed to investigate the chemical composition, crystalline structure and surface morphology of the NiTi films. The nitinol layers biocompatibility has been tested using as a metric the extent to which the cells adhere during the culture period on the surface of NiTi layers deposited on Ti substrates. Vero and fibroblast cell lines dispersed into MEM (Eagle) solution containing 8% fetal bovine serum, at 37° C, were used for tests. Preliminary studies indicate that the interaction at the interface is specifically controlled by the surface morphology, (especially by surface roughness), and by the chemical state of the surface. Cell behavior after contact with NiTi/Ti structure for different intervals (18, 22 and 25 days for the Vero cells, and after 10 and 25 days for fibroblasts) supports the conclusion that NiTi is a very good candidate as a biocompatible material.

Copyright

References

Hide All
1. Thierry, B., Tabrizian, M., Savadago, O., Yahia, L., Effects of sterlization processes on NiTi alloy: surface characterization, J. Biomed Mater Res 2000, 49:8898.
2. Wever, D.J., Velduizen, A.G., Sanders, M.M., Schakenraad, J.M., van Horn, J.R., Cytotoxic, allergic and genotoxic activity of a nickel- titanium alloy, Biomaterials 1997; 18: 11151120.
3. Trepanier, C., Tabrizian, M., Yahia, L., Bilodeau, L., Piron, D.L., Effect of modification of oxide layer on NiTi stent corrosion resistance, J. Biomed. Mater. Res. (Appl. Biomater.) 1998; 43:433440.
4. Trepanier, C., Leung, T. K., Tabrizian, M., Yahia, L., Bienvenu, J.G., Tanguay, J.F., Piron, D.L., Bilodeau, L., Preliminary investigation of the effects of surface treatments on biological response to shape memory NiTi stents, J. Biomed. Mater. Res. (Appl. Biomater.) 1999; 48:165171
5. Wataha, J.C., Lockwood, P.E., Marek, M., Ghazi, M., Ability of Ni-containing biomedical alloys to active monocytes and endothelial cells in vitro, Biomed. Mater. Res. 1999; 45: 251257.
6. Assad, M., Lemieux, N., Rivard, C.H., Yahia, L., Comparative in vitro biocompatibility of nickel- titanium, pure nickel, pure titanium and stainless steel: genotoxicity and atomic absorption evaluation, Biomed. Mater Eng. 1999; 9:112.
7. Rae, T. (1986) In: Techniques of Biocompatibility Testing, Volume II, Williams, D.F., ed., CRC Press, Boca Raton, FL, 81.
8. Rae, T. Flow Manual. Flow Laboratories Ltd, Victoria Park, Irvine, 1974, 108
9. RI, Freshney. Culture of animal cells. A manual of basic technique. Third edition, Wiley-Liss, Inc., New York, 1994, p. 127147.
10. Tanasa, R. Contributions to the study of some animal lentiviroses. DSc (PhD) Thesis. Bucharest University of Agronomic Sciences and Veterinary Medicine, 2001, p. 124138 (in Romanian).
11. Brailovski, V., Trochu, F., 1996. Review of shape memory alloys medical applications in Russia. Bio-Medical of Materials & Engineering 6 (4), 291298.
12. Rutner, B., Surface properties of biomaterials, Biomaterial Science, Academic Press, 1996, 2134.
13. Wen, X., Wang, X., Zhang, N., Micro-rough surface of metallic biomaterials, Review, BioMed. Mater. Eng., 1996; 6: 173189.
14. Shabalovskaya, A. S., Surface, corrosion and biocompatibility aspects of Nitinol as an implant material, Bio- Medical Materials and Eng. 12, 2002: 69109.
15. Chrisey, D.B., Hubler, G.H., Pulsed Laser Deposition of Thin Films, Eds. John Wiley, INC. 229 1994.
16. Gumbiner, B.M., Proteins associated with the cytoplasmic surface of adhesion molecules, Neuron 11, 1993, 551564.
17. JM, Anderson, TL, Bonfield & NP, Ziats (1990) Protein adsorption and cellular adhesion and activation on biomedical polymers. Int.J.Artif.Organs 13: 375382.
18. Groth, T, Altankov, G & Klosz, K (1994) Adhesion of human peripheral blood lymphocytes is dependent on surface wettability and protein preadsorption. Biomaterials 15: 423428.
19. Pytela, R, MD, Pierschbacher & Ruoslahti, E (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40: 191198.
20. Ruoslahti, E & MD, Pierschbacher (1987) New perspectives in cell adhesion: RGD and integrins. Science 238: 491497.
21. Shabalovskaya, S., Anderagg, J., Sachdeva, R., Harmon, B., Preliminary XPS spectroscopic characterization of autoclaved NiTi shape memory alloys for implants, Biomaterials for Drug and Cell Delivery, MRS, Vol.331, 1994:239244.
22. Gerber, H & SM, Perren (1980) Evaluation of tissue compatibility of in vitro cultures of embryonic bone. In: GD, Winter, JL, Leray & K, de Groot (Eds) Evaluation of Biomaterials, Wiley, New York, p 307314.

Biocompatibility Studies of the Nitinol Thin Films

  • C.Z. Dinu (a1), R. Tanasa (a2), V.C. Dinca (a1), A. Barbalat (a1), C. Grigoriu (a1), E.O. Bucur (a2), A. Dauscher (a3), V. Ferrari DeStefano (a4) and M. Dinescu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed