Skip to main content Accessibility help

Biocompatibility and Anti-microbial Properties of Silver Modified Amorphous Carbon Films

  • Argelia Almaguer-Flores (a1) (a2), René Olivares-Navarrete (a3), Laurie A. Ximénez-Fyvie (a2), Oscar García-Zarco (a1) and Sandra E. Rodil (a1)...


Infection due microbes on implant surfaces has a strong influence on healing and long term viability of dental implants. The prevention and control of biofilms can be achieved by reducing the bacterial adhesion on the surface. The coating of medical devices with silver, or the addition of silver nanoparticles, are two possible ways to prevent device-associated infections. On the other hand, amorphous carbon films, in its different forms and compositions, have been studied as beneficial surface modification for implant materials. However, the bacterial adhesion on these films by oral bacteria in comparison to standard surfaces (Ti and SS) has been seen to be relatively high. In the oral cavity, the microbial ecology is complex and consists of hundreds of bacterial species, and therefore it is recommendable to study bacteria adhesion using various strains. In this work, we tested the biocompatibility and the anti-microbial properties of amorphous carbon films with the addition of silver nanoparticles. The a-C:Ag films were deposited by co-sputtering in an Argon plasma using a target made of graphite with a small piece of pure silver. Biocompatibility tests were performed using osteoblast-like cells (MG63) and included: cell proliferation, alkaline phosphatase specific activity and OPG. The bacterial adhesion test was evaluated after 1, 3 and 7 days of incubation. We used nine oral bacteria strains: Aggregatibacter actinomycetemcomitans serotype b, Actinomyces israelii, Campylobacter rectus, Eikenella corrodens, Fusobacterium nucleatum ss nucleatum, Parvimonas micra, Porphyromonas gingivalis, Prevotella intermedia and Streptococcus sanguinis. The effect of including silver in the a-C films was studied by X-ray Diffraction, Energy Dispersive spectroscopy, Scanning Electron Microscopy. The results showed that the films had silver nanoparticles (40-60 nm) uniformly distributed in the carbon matrix. The silver was crystalline with a maximum content of around 6 at%. The biological tests showed that a-C:Ag films had good biocompatibility properties, allowing the osteoblast to proliferate and produced osteogenic local factors. Concerning the antimicrobial properties of the a-C:Ag films, we did not observe an effect of the silver particles on bacterial adherence after 1 and 3 days of incubation; however, a significant reduction was observed after 7 days, compared to the a-C, Ti films or the bare SS substrate, suggesting that silver nanoparticles have a time-dependent antimicrobial effect.



Hide All
1. Peters, G., Locci, R. and Pulverer, G., J Infect Dis 146 (4), 479482 (1982).
2. Harris, J. M. and Martin, L. F., Ann Surg 206 (5), 612620 (1987).
3. An, Y. H. and Friedman, R. J., J Invest Surg 11 (2), 139146 (1998).
4. Donlan, R. M., Emerging Infectious Diseases 7 (2), 277281 (2001).
5. Quirynen, M., De Soete, M. and van Steenberghe, D., Clin Oral Implants Res 13 (1), 119 (2002).
6. Vincent, J. L., Lancet 361 (9374), 20682077 (2003).
7. Gray, E. D., Peters, G., Verstegen, M. and Regelmann, W. E., Lancet 1 (8373), 365367 (1984).
8. Patel, R., Clin Orthop Relat Res (437), 4147 (2005).
9. Costerton, J. W., Clin Orthop Relat Res (437), 711 (2005).
10. An, Y. H. and Friedman, R. J., J Biomed Mater Res 43 (3), 338348 (1998).
11. Katsikogianni, M. and Missirlis, Y. F., Eur Cell Mater 8, 3757 (2004).
12. von Eiff, C., Peters, G. and Heilmann, C., Lancet Infect Dis 2 (11), 677685 (2002).
13. Liu, C., Zhao, Q., Liu, Y., Wang, S. and Abel, E. W., Colloids Surf B Biointerfaces 61 (2), 182187 (2008).
14. Yoshinari, M., Oda, Y., Kato, T., Okuda, K. and Hirayama, A., J Biomed Mater Res 52 (2), 388394 (2000).
15. Cordero, J., Munuera, L. and Folgueira, M. D., Injury 27 Suppl 3, SC3437 (1996).
16. Gottenbos, B., Van Der Mei, H. C., Busscher, H. J., Grijpma, D. W. and Feijen, J., J Mater Sci Mater Med 10 (12), 853855 (1999).
17. Strevett, K. A. and Chen, G., Res Microbiol 154 (5), 329335 (2003).
18. Scheuerman, T. R., Camper, A. K. and Hamilton, M. A., J Colloid Interface Sci 208 (1), 2333 (1998).
19. Barbour, M. E., O'Sullivan, D. J., Jenkinson, H. F. and Jagger, D. C., J Mater Sci Mater Med 18 (7), 14391447 (2007).
20. Klasen, H. J., Burns 26 (2), 117130 (2000).
21. Burrell, R. E., Ostomy Wound Manage 49 (5A Suppl), 1924 (2003).
22. Ewald, A., Gluckermann, S. K., Thull, R. and Gbureck, U., Biomed Eng Online 5, 22 (2006).
23. Bosetti, M., Masse, A., Tobin, E. and Cannas, M., Biomaterials 23 (3), 887892 (2002).
24. Darouiche, R. O., Clin Infect Dis 29 (6), 13711377; quiz 1378 (1999).
25. Schierholz, J. M., Lucas, L. J., Rump, A. and Pulverer, G., J Hosp Infect 40 (4), 257262 (1998).
26. Chen, W., Liu, Y., Courtney, H. S., Bettenga, M., Agrawal, C. M., Bumgardner, J. D. and Ong, J. L., Biomaterials 27 (32), 55125517 (2006).
27. Kwok, S. C. H., Zhang, W., Wan, G. J., McKenzie, D. R., Bilek, M. M. M. and Chu, P. K., Diamond and Related Materials 16 (4–7), 13531360 (2007).
28. Jung, R., Kim, Y., Kim, H. S. and Jin, H. J., J Biomater Sci Polym Ed 20 (3), 311324 (2009).
29. Rai, M., Yadav, A. and Gade, A., Biotechnol Adv 27 (1), 7683 (2009).
30. Roy, R. K. and Lee, K. R., Journal of Biomedical Materials Research Part B-Applied Biomaterials 83B (1), 7284 (2007).
31. Zhou, H., Xu, L., Ogino, A. and Nagatsu, M., Diamond and Related Materials 17 (7–10), 14161419 (2008).
32. Wang, J., Huang, N., Yang, P., Leng, Y., Sun, H., Liu, Z. Y. and Chu, P. K., Biomaterials 25 (16), 31633170 (2004).
33. Ishihara, M., Kosaka, T., Nakamura, T., Tsugawa, K., Hasegawa, M., Kokai, F. and Koga, Y., Diamond and Related Materials 15 (4–8), 10111014 (2006).
34. Jones, D. S., Garvin, C. P., Dowling, D., Donnelly, K. and Gorman, S. P., J Biomed Mater Res B Appl Biomater 78 (2), 230236 (2006).
35. Zhao, Q., Liu, Y., Wang, C. and Wang, S., Applied Surface Science 253 (17), 72547259 (2007).
36. Litzler, P. Y., Benard, L., Barbier-Frebourg, N., Vilain, S., Jouenne, T., Beucher, E., Bunel, C., Lemeland, J. F. and Bessou, J. P., J Thorac Cardiovasc Surg 134 (4), 10251032 (2007).
37. Rodil, S. E., Olivares, R., Arzate, H. and Muhl, S., Diamond and Related Materials 12 (3–7), 931937 (2003).
38. Rodil, S. E., Olivares, R. and Arzate, H., Biomed Mater Eng 15 (1–2), 101112 (2005).
39. Rodil, S. E., Olivares, R., Arzate, H. and Muhl, S. in Topics in Applied Physics 100; The future material for advanced technology applications, edited by Messina, G. and Santangelo, S. (Springer-Verlag, Germany, 2006), pp. 5575.
40. Olivares, R., Rodil, S. E. and Arzate, H., Surface & Coatings Technology 177, 758764 (2004).
41. Almaguer-Flores, A., Olivares-Navarrete, R., Lechuga-Bernal, A., Ximénez-Fyvie, L. A. and Rodil, S. E., Diamond and Related Materials (2009).
42. Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. and Dewhirst, F. E., J Bacteriol 183 (12), 37703783 (2001).


Biocompatibility and Anti-microbial Properties of Silver Modified Amorphous Carbon Films

  • Argelia Almaguer-Flores (a1) (a2), René Olivares-Navarrete (a3), Laurie A. Ximénez-Fyvie (a2), Oscar García-Zarco (a1) and Sandra E. Rodil (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed