Skip to main content Accessibility help
×
Home

Bilinear Behavior in the Indentation Size Effect: A Consequence of Strain Gradient Plasticity

  • A. A. Elmustafa (a1), J. Lou (a2), O. Adewoye (a2), W. O. Soboyejo (a2) and D. S. Stone (a3)...

Abstract

This paper examines the effects of stacking fault energy on the micro- and nano-indentation behavior of face-centered-cubic thin films. These include: LIGA nickel MEMS structures, alpha brass, copper and high purity aluminum. The measured hardness are then fitted to a strain gradient plasticity model based on the Taylor dislocation hardening model. Hardness is shown to exhibit a size dependence with different characteristic slopes in the micron and nano-scale regimes. Deep indents are shown to exhibit classical linear behavior. However, shallow indents exhibit an abrupt decrease in slope (almost by a factor of 10), giving rise to a bi-linear behavior. Furthermore, as the gradients become less sharp, the trends in the nano-hardness data become similar to those of the microhardness data predicted by the strain gradient plasticity model. Finally, the effects of stacking fault energy are then discussed within the context of cross-slip and hardening associated with Shockly partials.

Copyright

References

Hide All
1. Nix, W.D., Gao, H., J. Mech. Phys. Solids, 46, 411 (1998).
2. Stelmashenko, N.A., Walls, M.G., Brown, L.M. and Milman, Y.V., Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, eds. Nastasi, M., Parkin, D.M. and Gleiter, H., NATO ASI Series E 233, 602 (1993).
3. Ma, Q., and Clarke, D.R., J. Mater. Res. 10, 853 (1995).
4. Poole, W.J., Ashby, M.F. and Fleck, N.A., Scripta Materialia, Vol. 34, 559 (1996).
5. Lou, J., Shrotriya, P., Buchheit, T.E., Yang, D. and Soboyejo, W.O., Journal of Materials Research, Accepted.
6. Elmustafa, A.A., and Stone, D.S., J. Mech. Phys. Solids, 51, 357 (2003).
7. Begley, M.R. and Hutchinson, J.W., J. Mech. Phys. Solids, Vol. 46, 2049 (1998).
8. De Guzman, M.S., Neubauer, G., Flinn, P. and Nix, W.D., Materials Research Symposium Proceedings, Vol. 308, 613 (1993).
9. Christensen, T., Buchheit, T., Schmale, D.T., and Bourcier, R.J., Microelectromechanical Structures for Materials Research, MRS, eds. Brown, S. et al., 185 (1999).
10. Buchheit, T.E., LaVan, D.A., Michael, J. R., Chrinstenson, T.R. and Leith, S. D., Metallurgical and Materials Transactions, 33, 539 (2002).
11. Stone, D.S. and Yoder, K.B., MRS., 308, eds. Townsend, P. H., Weihs, T., Sanchez, J. E. Jr, and Borgensen, P., Pittsburgh, PA, 121 (1993).
12. Stone, D.S., Yoder, K.B., and Sproul, W.D., J. Vac. Sci. Technol., A, 9, 2543 (1991).
13. Joslin, D.L., Oliver, W.C., J. Mater. Res., 5, 123 (1990).
14. Oliver, W.C. and Pharr, G.M., J. of Mater. Res., Vol. 7, 1564 (1992).
15. Fleck, N.A., Muller, G.M., Ashby, M.F., and Hutchinson, J.W., Acta Metall. Mater. 42, 475 (1994).
16. Fleck, N.A., and Hutchinson, J.W., J. Mech. Phys. Solids, 41, 1825 (1993).
17. Lim, Y.Y., and Chaudhri, M.M., Phil. Mag. A. 79, 2979 (1999).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed