Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T12:54:10.730Z Has data issue: false hasContentIssue false

BaTiO3 Waveguides on MgO Buffered-Sapphire Single Crystals

Published online by Cambridge University Press:  10 February 2011

Judit G. Lisoni
Affiliation:
Institut für Schicht- und Ionentechnik, D-52425 Juelich, Germany
M. Siegert
Affiliation:
Institut für Schicht- und Ionentechnik, D-52425 Juelich, Germany
C. H. Lei
Affiliation:
Institut für Festörperforschung, Forschungszentrum Jülich GmbH, D-52425 Juelich, Germany
C. L. Jia
Affiliation:
Institut für Festörperforschung, Forschungszentrum Jülich GmbH, D-52425 Juelich, Germany
J. Schubert
Affiliation:
Institut für Schicht- und Ionentechnik, D-52425 Juelich, Germany
W. Zander
Affiliation:
Institut für Schicht- und Ionentechnik, D-52425 Juelich, Germany
Ch. Buchal
Affiliation:
Institut für Schicht- und Ionentechnik, D-52425 Juelich, Germany
Get access

Abstract

Within our program to develop ferroelectric thin film optical waveguides, we have studied the growth of epitaxial waveguides BaTiO3 on r-plane sapphire substrates with a MgO buffer layer. The films were prepared by pulsed laser deposition (PLD). Their structural properties were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), Rutherford backscattering (RBS) in random and channeling (RBS-c) configuration and atomic force microscopy (AFM). They displayed good crystalline quality, characterized by an RBS-c minimum yield of about 4–6%, a full width at half maximum (FWHM) of the XRD rocking curve measurement of the BaTiO3(200) reflection of 0.32° and a rms roughness of 1.2 nm in a film of ∼ 1.0 μm thickness. The epitaxial relationship was found to be BaTiO3(100) // MgO(100) // A12O3(1102). The refractive index, the birefringence and the optical losses have been measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davis, C. C., “Lasers and Electro-optics: Fundamentals and Engineering”, Cambridge Univ. Press, Great Britain, 1996.Google Scholar
2. Beckers, L., Schubert, J., Zander, W., Ziesmann, J., Eckau, A., Leinenbach, P. and Buchal, Ch., J. Appl. Phys. 83, 3305(1998).Google Scholar
3. Lei, C. H., Jia, C.L., Siegert, M., Schubert, J., Buchal, Ch. and Urban, K., J. Crys. Growth 204, 137 (1999).Google Scholar
4. Lisoni, Judit G. and Siegert, M. (unpublished results).Google Scholar
5. Berenzin, A. B., Yuan, C. W. and Lozanne, A. L. de, Appl. Phys. Lett. 57, 90(1990).Google Scholar
6. Talvacchio, J., Wagner, G. R. and Pohl, H. C., Physica C 162–164, 659 (1989).Google Scholar
7. Tomlinson, E. J., Barber, Z. H., Morris, G. W., Somekh, R.E. and Evetts, J.E., IEEE Trans. on Magnetics 25, 2530(1989).Google Scholar
8. Stampe, P. A., Bullock, M., Tucker, W. P. and Robin Kennedy, J., J. Phys. D 32, 1778(1999).Google Scholar
9. Buchal, Ch., Fluck, D. and Günter, P., J. Electroceramics 3, 179(1999).Google Scholar