Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-05-12T05:27:52.968Z Has data issue: false hasContentIssue false

Barrier Layer Morphological Stability and Adhesion to Porous Low-κ Dielectrics

Published online by Cambridge University Press:  17 March 2011

Get access

Abstract

Two particularly important reliability issues facing the integration of low- κ dielectric films are the fracture energy of the barrier-dielectric interface and the barrier layer integrity during processing. We have noticed that the compressive stresses in the barrier layers on low- κ dielectrics lead to spontaneous delamination and formation of telephone-cord like morphologies. These morphologies allow the measurement of fracture energy and are advantageous over artificially contrived features to yield realistic debonding parameters. The fracture energy of common barrier films, TaN and Ta, was determined using this method for varying porosity nanoporous silica and MSQ. Detailed characterization of the telephone cord morphology using a combination of Optical Microscopy, SEM and Profilometry was done. The fracture energy for Ta on different low-κ dielectrics was evaluated using a 1-D model for straight buckles. The kinetic coefficient of buckling was also evaluated.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nitta, S. V., Pisupatti, V., Jain, A., Wayner, P. C. Jr, Gill, W. N. and Plawsky, J. L., J. Vac. Sci. Technol. B, 17 (1999) 205.Google Scholar
2.Plawsky, J. L., Jain, A., Rogojevic, S. and Gill, W. N., “Nanoporous Dielectric Films: Fundamental Property Relations and Microelectronics Applications”, Chapter 4 in Interlayer Dielectrics for Semiconductor Technologies, Murarka, S., Sinha, Eisenberg (Editors), Elsevier Inc. (2003).Google Scholar
3.Maex, K., Baklanov, M. R., Shamiryan, D., lacopi, F., Brongersma, S. H. and Yanovitskaya, Z. S., J. Appl. Phys., 93(11) (2003) 8793.CrossRefGoogle Scholar
4.Gioia, G. and Ortiz, M., Adv. Appl. Mech., 33 (1997) 119.CrossRefGoogle Scholar
5.Moon, M. W., Jensen, H. M., Hutchinson, J. W., Oh, K. H. and Evans, A. G., J. Mech. Phys. Solids, 50 (2002) 2355.CrossRefGoogle Scholar
6.Volinsky, A. A., Proc. Mat. Res. Soc., W10.7 (2003) 1.Google Scholar
7.Jain, A., Rogojevic, S., Ponoth, S., Agarwal, N., Matthew, I., Gill, W.N., Persans, P., Tomozawa, M., Plawsky, J.L., Simonyi, E., Thin Solid Films, 398–399 (2001) 513.CrossRefGoogle Scholar
8.Baklanov, M. R. and Mogilnikov, K. P., Microelectronic Engineering, 64 (2002) 335.Google Scholar
9.Saxena, R., Rodriguez, O., Cho, W., Baklanov, M. R., Moglinikov, K. P., Gill, W. N. and Plawsky, J. L., J. Non-Crystalline Solids, Accepted Jan (2004).Google Scholar
10.Moody, N. R. et al. Acta Mater, 46(2) (1998) 585.CrossRefGoogle Scholar
11.Gioia, G. and Ortiz, M., Acta Mater, 46(1) (1998) 169.CrossRefGoogle Scholar